我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

与ShikharDua的答案(基于行)中的字典列表不同,我们也可以将我们的表表示为一个列表字典(基于列),其中每个列表按行顺序存储一列,前提是我们事先知道我们的列。最后,我们构造一次DataFrame。

在这两种情况下,字典键始终是列名。行顺序隐式存储为列表中的order。对于c列和n行,它使用一个c个字典列表,而不是一个n个字典列表。字典列表方法让每个字典冗余地存储所有键,并且需要为每一行创建一个新字典。这里我们只追加到列表中,这总体上是相同的时间复杂度(向列表和字典中添加条目都是平摊常数时间),但由于操作简单,开销可能更小。

# Current data
data = {"Animal":["cow", "horse"], "Color":["blue", "red"]}

# Adding a new row (be careful to ensure every column gets another value)
data["Animal"].append("mouse")
data["Color"].append("black")

# At the end, construct our DataFrame
df = pd.DataFrame(data)
#   Animal  Color
# 0    cow   blue
# 1  horse    red
# 2  mouse  black

其他回答

你可以使用pandas.concat()。有关详细信息和示例,请参见合并、连接和连接。

例如:

def append_row(df, row):
    return pd.concat([
                df, 
                pd.DataFrame([row], columns=row.index)]
           ).reset_index(drop=True)

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})

df = append_row(df, new_row)

这将负责向空DataFrame添加一个项。问题是对于第一个索引,df.index.max() == nan:

df = pd.DataFrame(columns=['timeMS', 'accelX', 'accelY', 'accelZ', 'gyroX', 'gyroY', 'gyroZ'])

df.loc[0 if math.isnan(df.index.max()) else df.index.max() + 1] = [x for x in range(7)]

pandas.DataFrame.append

DataFrame。append(self, other, ignore_index=False, verify_integrity=False, sort=False)→'数据帧'

Code

df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df.append(df2)

ignore_index设置为True:

df.append(df2, ignore_index=True)

如果你的Dataframe中的所有数据都有相同的dtype,你可以使用NumPy数组。您可以直接将行写入预定义数组,并在最后将其转换为数据框架。 它似乎比转换字典列表还要快。

import pandas as pd
import numpy as np
from string import ascii_uppercase

startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
    npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)

如果你可以提前获得数据帧的所有数据,有一个比追加到数据帧更快的方法:

创建一个字典列表,其中每个字典对应一个输入数据行。 从这个列表创建一个数据帧。

我有一个类似的任务,一行一行地添加到一个数据帧花了30分钟,从字典列表中创建一个数据帧在几秒钟内完成。

rows_list = []
for row in input_rows:

        dict1 = {}
        # get input row in dictionary format
        # key = col_name
        dict1.update(blah..) 

        rows_list.append(dict1)

df = pd.DataFrame(rows_list)