我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

你可以用df。Loc [i],其中索引为i的行将是你在数据框架中指定的行。

>>> import pandas as pd
>>> from numpy.random import randint

>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>>     df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))

>>> df
     lib qty1 qty2
0  name0    3    3
1  name1    2    4
2  name2    2    8
3  name3    2    1
4  name4    9    6

其他回答

这个代码片段使用字典列表来更新数据帧。它补充了ShikharDua和Mikhail_Sam的答案。

import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
    for y in fruits:
#         print(x, y)
        dict1 = dict([('x',x),('y',y)])
#         print(f'dict 1 {dict1}')
        feat_list.append(dict1)
#         print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')

您可以使用生成器对象来创建一个Dataframe,这将在列表中更有效地使用内存。

num = 10

# Generator function to generate generator object
def numgen_func(num):
    for i in range(num):
        yield ('name_{}'.format(i), (i*i), (i*i*i))

# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )

df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))

要向现有的数据帧添加raw,可以使用append方法。

df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400  }])

这不是OP问题的答案,而是一个玩具例子来说明ShikharDua的答案,我觉得非常有用。

虽然这个片段很简单,但在实际数据中,我有1000行和许多列,我希望能够根据不同的列进行分组,然后对多个目标列执行下面的统计。因此,有一种可靠的方法来一次一行地构建数据帧是非常方便的。谢谢你,ShikharDua!

import pandas as pd

BaseData = pd.DataFrame({ 'Customer' : ['Acme','Mega','Acme','Acme','Mega','Acme'],
                          'Territory'  : ['West','East','South','West','East','South'],
                          'Product'  : ['Econ','Luxe','Econ','Std','Std','Econ']})
BaseData

columns = ['Customer','Num Unique Products', 'List Unique Products']

rows_list=[]
for name, group in BaseData.groupby('Customer'):
    RecordtoAdd={} #initialise an empty dict
    RecordtoAdd.update({'Customer' : name}) #
    RecordtoAdd.update({'Num Unique Products' : len(pd.unique(group['Product']))})
    RecordtoAdd.update({'List Unique Products' : pd.unique(group['Product'])})

    rows_list.append(RecordtoAdd)

AnalysedData = pd.DataFrame(rows_list)

print('Base Data : \n',BaseData,'\n\n Analysed Data : \n',AnalysedData)

永远不要增长数据框架!

是的,人们已经解释了,你不应该增长一个DataFrame,你应该追加你的数据到一个列表,并转换为一个DataFrame一旦结束。但你知道为什么吗?

以下是最重要的原因,摘自我在这里的帖子。

它总是更便宜/更快地追加到一个列表和创建一个DataFrame。 列表占用更少的内存,并且是一种更轻的数据结构,可以处理、添加和删除。 为您的数据自动推断d类型。另一方面,创建一个空的nan帧将自动使它们成为对象,这是不好的。 索引是自动为您创建的,而不是您必须小心地将正确的索引分配给您追加的行。

这是正确的方式™积累您的数据

data = []
for a, b, c in some_function_that_yields_data():
    data.append([a, b, c])

df = pd.DataFrame(data, columns=['A', 'B', 'C'])

这些选择都很糟糕

在循环内追加或连接 Append和concat单独在本质上并不坏。的 当您在循环中迭代调用它们时,问题就开始了 结果在二次内存使用。 #创建空数据框架并追加 Df = pd。DataFrame(columns=['A', 'B', 'C']) 对于some_function_that_yields_data()中的a, b, c: Df = Df。追加({A:我,B: B, C: C}, ignore_index = True) #这同样糟糕: # df = pd.concat( # df, pd。({'A': i, 'B': B, 'C': C})], # ignore_index = True) 清空nan的数据帧 永远不要创建nan的数据帧,因为列是初始化的 对象(缓慢的、不可向量化的dtype)。 #创建nan的数据帧并覆盖值。 Df = pd。DataFrame(列= [' A ', ' B ', ' C '],指数=范围(5)) 对于some_function_that_yields_data()中的a, b, c: df.loc[len(df)] = [a, b, c]

见分晓

对这些方法进行计时是了解它们在内存和效用方面有多大不同的最快方法。

基准测试代码供参考。


像这样的帖子提醒了我为什么我是这个社区的一员。人们明白教人们用正确的代码得到正确答案的重要性,而不是用错误的代码得到正确答案。现在,您可能会争辩说,如果您只是向DataFrame添加一行,那么使用loc或append都不是问题。然而,人们经常会在这个问题上添加不止一行——通常要求是使用来自函数的数据在循环中迭代地添加一行(参见相关问题)。在这种情况下,重要的是要理解迭代增长DataFrame不是一个好主意。

在添加一行之前,我们必须将数据帧转换为字典。在这里,你可以看到键作为数据帧中的列,列的值再次存储在字典中,但是每个列的键都是数据帧中的索引号。

这个想法促使我编写下面的代码。

df2 = df.to_dict()
values = ["s_101", "hyderabad", 10, 20, 16, 13, 15, 12, 12, 13, 25, 26, 25, 27, "good", "bad"] # This is the total row that we are going to add
i = 0
for x in df.columns:   # Here df.columns gives us the main dictionary key
    df2[x][101] = values[i]   # Here the 101 is our index number. It is also the key of the sub dictionary
    i += 1