最近我一直在iPhone上玩一款名为《Scramble》的游戏。有些人可能知道这个游戏叫拼字游戏。从本质上讲,当游戏开始时,你会得到一个字母矩阵:

F X I E
A M L O
E W B X
A S T U

The goal of the game is to find as many words as you can that can be formed by chaining letters together. You can start with any letter, and all the letters that surround it are fair game, and then once you move on to the next letter, all the letters that surround that letter are fair game, except for any previously used letters. So in the grid above, for example, I could come up with the words LOB, TUX, SEA, FAME, etc. Words must be at least 3 characters, and no more than NxN characters, which would be 16 in this game but can vary in some implementations. While this game is fun and addictive, I am apparently not very good at it and I wanted to cheat a little bit by making a program that would give me the best possible words (the longer the word the more points you get).

(来源:boggled.org)

不幸的是,我不太擅长算法或它们的效率等等。我的第一次尝试使用一个像这样的字典(约2.3MB),并进行线性搜索,试图匹配字典条目的组合。这需要花费很长时间来找到可能的单词,因为你每轮只有2分钟的时间,这是不够的。

我很有兴趣看看是否有任何Stackoverflowers可以提出更有效的解决方案。我主要是在寻找使用三大p的解决方案:Python、PHP和Perl,尽管任何使用Java或c++的东西也很酷,因为速度是至关重要的。

目前的解决方案:

Adam Rosenfield, Python, ~20岁 John Fouhy, Python, ~3秒 Kent Fredric, Perl, ~1s Darius Bacon, Python, ~1s rvarcher, VB。净,~ 1 s Paolo Bergantino, PHP(实时链接),~5s(本地~2s)


当前回答

该解决方案还提供了在给定的板中搜索的方向

一件事:

1. Uses trie to save all the word in the english to fasten the search
2. The uses DFS to search the words in Boggle

输出:

Found "pic" directions from (4,0)(p) go  → →
Found "pick" directions from (4,0)(p) go  → → ↑
Found "pickman" directions from (4,0)(p) go  → → ↑ ↑ ↖ ↑
Found "picket" directions from (4,0)(p) go  → → ↑ ↗ ↖
Found "picked" directions from (4,0)(p) go  → → ↑ ↗ ↘
Found "pickle" directions from (4,0)(p) go  → → ↑ ↘ →

代码:

from collections import defaultdict
from nltk.corpus import words
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

english_words = words.words()

# If you wan to remove stop words
# stop_words = set(stopwords.words('english'))
# english_words = [w for w in english_words if w not in stop_words]

boggle = [
    ['c', 'n', 't', 's', 's'],
    ['d', 'a', 't', 'i', 'n'],
    ['o', 'o', 'm', 'e', 'l'],
    ['s', 'i', 'k', 'n', 'd'],
    ['p', 'i', 'c', 'l', 'e']
]

# Instead of X and Y co-ordinates
# better to use Row and column
lenc = len(boggle[0])
lenr = len(boggle)

# Initialize trie datastructure
trie_node = {'valid': False, 'next': {}}

# lets get the delta to find all the nighbors
neighbors_delta = [
    (-1,-1, "↖"),
    (-1, 0, "↑"),
    (-1, 1, "↗"),
    (0, -1, "←"),
    (0,  1, "→"),
    (1, -1, "↙"),
    (1,  0, "↓"),
    (1,  1, "↘"),
]


def gen_trie(word, node):
    """udpates the trie datastructure using the given word"""
    if not word:
        return

    if word[0] not in node:
        node[word[0]] = {'valid': len(word) == 1, 'next': {}}

    # recursively build trie
    gen_trie(word[1:], node[word[0]])


def build_trie(words, trie):
    """Builds trie data structure from the list of words given"""
    for word in words:
        gen_trie(word, trie)
    return trie


def get_neighbors(r, c):
    """Returns the neighbors for a given co-ordinates"""
    n = []
    for neigh in neighbors_delta:
        new_r = r + neigh[0]
        new_c = c + neigh[1]

        if (new_r >= lenr) or (new_c >= lenc) or (new_r < 0) or (new_c < 0):
            continue
        n.append((new_r, new_c, neigh[2]))
    return n


def dfs(r, c, visited, trie, now_word, direction):
    """Scan the graph using DFS"""
    if (r, c) in visited:
        return

    letter = boggle[r][c]
    visited.append((r, c))

    if letter in trie:
        now_word += letter

        if trie[letter]['valid']:
            print('Found "{}" {}'.format(now_word, direction))

        neighbors = get_neighbors(r, c)
        for n in neighbors:
            dfs(n[0], n[1], visited[::], trie[letter], now_word, direction + " " + n[2])


def main(trie_node):
    """Initiate the search for words in boggle"""
    trie_node = build_trie(english_words, trie_node)

    # print the board
    print("Given board")
    for i in range(lenr):print (boggle[i])
    print ('\n')

    for r in range(lenr):
        for c in range(lenc):
            letter = boggle[r][c]
            dfs(r, c, [], trie_node, '', 'directions from ({},{})({}) go '.format(r, c, letter))


if __name__ == '__main__':
    main(trie_node)

其他回答

我建议根据单词做一个字母树。这棵树将由字母结构组成,像这样:

letter: char
isWord: boolean

然后构建树,每个深度添加一个新字母。换句话说,第一层是字母表;然后从这些树中,会有另外26个条目,以此类推,直到你把所有的单词都拼出来。坚持这个解析树,它将使所有可能的答案更快地查找。

使用这个解析过的树,您可以非常快速地找到解决方案。下面是伪代码:

BEGIN: 
    For each letter:
        if the struct representing it on the current depth has isWord == true, enter it as an answer.
        Cycle through all its neighbors; if there is a child of the current node corresponding to the letter, recursively call BEGIN on it.

这可以通过一些动态编程来加快。例如,在你的样本中,两个“A”都在一个“E”和一个“W”旁边,这(从它们击中它们的点来看)是相同的。我没有足够的时间来详细说明这个代码,但我想你们可以理解。

此外,我相信你会找到其他解决方案,如果你谷歌“Boggle solver”。

所以我想添加另一种PHP方法来解决这个问题,因为每个人都喜欢PHP。 我想做一点重构,比如对字典文件使用regexpression匹配,但现在我只是将整个字典文件加载到一个wordList中。

我使用了链表的思想。每个Node都有一个字符值、一个位置值和一个next指针。

location值是我发现两个节点是否连接的方法。

1     2     3     4
11    12    13    14
21    22    23    24
31    32    33    34

所以使用这个网格,如果第一个节点的位置等于第二个节点的位置+/- 1(同一行),+/- 9,10,11(上下一行),我就知道两个节点是连接的。

我使用递归进行主搜索。它从wordList中取出一个单词,找到所有可能的起点,然后递归地找到下一个可能的连接,记住它不能去到它已经使用的位置(这就是为什么我添加$notInLoc)。

无论如何,我知道它需要一些重构,并且希望听到关于如何使它更干净的想法,但是它根据我使用的字典文件产生了正确的结果。根据黑板上元音和组合的数量,大约需要3到6秒。我知道,一旦我对字典结果进行预匹配,这将显著减少。

<?php
    ini_set('xdebug.var_display_max_depth', 20);
    ini_set('xdebug.var_display_max_children', 1024);
    ini_set('xdebug.var_display_max_data', 1024);

    class Node {
        var $loc;

        function __construct($value) {
            $this->value = $value;
            $next = null;
        }
    }

    class Boggle {
        var $root;
        var $locList = array (1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34);
        var $wordList = [];
        var $foundWords = [];

        function __construct($board) {
            // Takes in a board string and creates all the nodes
            $node = new Node($board[0]);
            $node->loc = $this->locList[0];
            $this->root = $node;
            for ($i = 1; $i < strlen($board); $i++) {
                    $node->next = new Node($board[$i]);
                    $node->next->loc = $this->locList[$i];
                    $node = $node->next;
            }
            // Load in a dictionary file
            // Use regexp to elimate all the words that could never appear and load the 
            // rest of the words into wordList
            $handle = fopen("dict.txt", "r");
            if ($handle) {
                while (($line = fgets($handle)) !== false) {
                    // process the line read.
                    $line = trim($line);
                    if (strlen($line) > 2) {
                        $this->wordList[] = trim($line);
                    }
                }
                fclose($handle);
            } else {
                // error opening the file.
                echo "Problem with the file.";
            } 
        }

        function isConnected($node1, $node2) {
        // Determines if 2 nodes are connected on the boggle board

            return (($node1->loc == $node2->loc + 1) || ($node1->loc == $node2->loc - 1) ||
               ($node1->loc == $node2->loc - 9) || ($node1->loc == $node2->loc - 10) || ($node1->loc == $node2->loc - 11) ||
               ($node1->loc == $node2->loc + 9) || ($node1->loc == $node2->loc + 10) || ($node1->loc == $node2->loc + 11)) ? true : false;

        }

        function find($value, $notInLoc = []) {
            // Returns a node with the value that isn't in a location
            $current = $this->root;
            while($current) {
                if ($current->value == $value && !in_array($current->loc, $notInLoc)) {
                    return $current;
                }
                if (isset($current->next)) {
                    $current = $current->next;
                } else {
                    break;
                }
            }
            return false;
        }

        function findAll($value) {
            // Returns an array of nodes with a specific value
            $current = $this->root;
            $foundNodes = [];
            while ($current) {
                if ($current->value == $value) {
                    $foundNodes[] = $current;
                }
                if (isset($current->next)) {
                    $current = $current->next;
                } else {
                    break;
                }
            }
            return (empty($foundNodes)) ? false : $foundNodes;
        }

        function findAllConnectedTo($node, $value, $notInLoc = []) {
            // Returns an array of nodes that are connected to a specific node and 
            // contain a specific value and are not in a certain location
            $nodeList = $this->findAll($value);
            $newList = [];
            if ($nodeList) {
                foreach ($nodeList as $node2) {
                    if (!in_array($node2->loc, $notInLoc) && $this->isConnected($node, $node2)) {
                        $newList[] = $node2;
                    }
                }
            }
            return (empty($newList)) ? false : $newList;
        }



        function inner($word, $list, $i = 0, $notInLoc = []) {
            $i++;
            foreach($list as $node) {
                $notInLoc[] = $node->loc;
                if ($list2 = $this->findAllConnectedTo($node, $word[$i], $notInLoc)) {
                    if ($i == (strlen($word) - 1)) {
                        return true;
                    } else {
                        return $this->inner($word, $list2, $i, $notInLoc);
                    }
                }
            }
            return false;
        }

        function findWord($word) {
            if ($list = $this->findAll($word[0])) {
                return $this->inner($word, $list);
            }
            return false;
        }

        function findAllWords() {
            foreach($this->wordList as $word) {
                if ($this->findWord($word)) {
                    $this->foundWords[] = $word;
                }
            }
        }

        function displayBoard() {
            $current = $this->root;
            for ($i=0; $i < 4; $i++) {
                echo $current->value . " " . $current->next->value . " " . $current->next->next->value . " " . $current->next->next->next->value . "<br />";
                if ($i < 3) {
                    $current = $current->next->next->next->next;
                }
            }
        }

    }

    function randomBoardString() {
        return substr(str_shuffle(str_repeat("abcdefghijklmnopqrstuvwxyz", 16)), 0, 16);
    }

    $myBoggle = new Boggle(randomBoardString());
    $myBoggle->displayBoard();
    $x = microtime(true);
    $myBoggle->findAllWords();
    $y = microtime(true);
    echo ($y-$x);
    var_dump($myBoggle->foundWords);

    ?>

I wrote my solver in C++. I implemented a custom tree structure. I'm not sure it can be considered a trie but it's similar. Each node has 26 branches, 1 for each letter of the alphabet. I traverse the branches of the boggle board in parallel with the branches of my dictionary. If the branch does not exist in the dictionary, I stop searching it on the Boggle board. I convert all the letters on the board to ints. So 'A' = 0. Since it's just arrays, lookup is always O(1). Each node stores if it completes a word and how many words exist in its children. The tree is pruned as words are found to reduce repeatedly searching for the same words. I believe pruning is also O(1).

CPU: Pentium SU2700 1.3GHz 内存:3 gb

在< 1秒内加载178,590个单词的字典。 在4秒内解决100x100 Boggle (Boggle .txt)。约44000字。 解决4x4 Boggle游戏的速度太快,无法提供有意义的基准。:)

快速Boggle求解GitHub回购

下面是使用NLTK工具包中的预定义单词的解决方案 NLTK有NLTK。语料库包,我们有一个叫做单词的包,它包含超过20万个英语单词,你可以简单地把它们都用到你的程序中。

一旦创建你的矩阵转换成一个字符数组,并执行这段代码

import nltk
from nltk.corpus import words
from collections import Counter

def possibleWords(input, charSet):
    for word in input:
        dict = Counter(word)
        flag = 1
        for key in dict.keys():
            if key not in charSet:
                flag = 0
        if flag == 1 and len(word)>5: #its depends if you want only length more than 5 use this otherwise remove that one. 
            print(word)


nltk.download('words')
word_list = words.words()
# prints 236736
print(len(word_list))
charSet = ['h', 'e', 'l', 'o', 'n', 'v', 't']
possibleWords(word_list, charSet)

输出:

eleven
eleventh
elevon
entente
entone
ethene
ethenol
evolve
evolvent
hellhole
helvell
hooven
letten
looten
nettle
nonene
nonent
nonlevel
notelet
novelet
novelette
novene
teenet
teethe
teevee
telethon
tellee
tenent
tentlet
theelol
toetoe
tonlet
toothlet
tootle
tottle
vellon
velvet
velveteen
venene
vennel
venthole
voeten
volent
volvelle
volvent
voteen

我希望你能得到它。

我用c语言解决了这个问题。在我的机器上运行大约需要48毫秒(其中98%的时间花在从磁盘加载字典和创建trie上)。字典是/usr/share/dict/american-english,有62886个单词。

源代码