最近我一直在iPhone上玩一款名为《Scramble》的游戏。有些人可能知道这个游戏叫拼字游戏。从本质上讲,当游戏开始时,你会得到一个字母矩阵:

F X I E
A M L O
E W B X
A S T U

The goal of the game is to find as many words as you can that can be formed by chaining letters together. You can start with any letter, and all the letters that surround it are fair game, and then once you move on to the next letter, all the letters that surround that letter are fair game, except for any previously used letters. So in the grid above, for example, I could come up with the words LOB, TUX, SEA, FAME, etc. Words must be at least 3 characters, and no more than NxN characters, which would be 16 in this game but can vary in some implementations. While this game is fun and addictive, I am apparently not very good at it and I wanted to cheat a little bit by making a program that would give me the best possible words (the longer the word the more points you get).

(来源:boggled.org)

不幸的是,我不太擅长算法或它们的效率等等。我的第一次尝试使用一个像这样的字典(约2.3MB),并进行线性搜索,试图匹配字典条目的组合。这需要花费很长时间来找到可能的单词,因为你每轮只有2分钟的时间,这是不够的。

我很有兴趣看看是否有任何Stackoverflowers可以提出更有效的解决方案。我主要是在寻找使用三大p的解决方案:Python、PHP和Perl,尽管任何使用Java或c++的东西也很酷,因为速度是至关重要的。

目前的解决方案:

Adam Rosenfield, Python, ~20岁 John Fouhy, Python, ~3秒 Kent Fredric, Perl, ~1s Darius Bacon, Python, ~1s rvarcher, VB。净,~ 1 s Paolo Bergantino, PHP(实时链接),~5s(本地~2s)


当前回答

所以我想添加另一种PHP方法来解决这个问题,因为每个人都喜欢PHP。 我想做一点重构,比如对字典文件使用regexpression匹配,但现在我只是将整个字典文件加载到一个wordList中。

我使用了链表的思想。每个Node都有一个字符值、一个位置值和一个next指针。

location值是我发现两个节点是否连接的方法。

1     2     3     4
11    12    13    14
21    22    23    24
31    32    33    34

所以使用这个网格,如果第一个节点的位置等于第二个节点的位置+/- 1(同一行),+/- 9,10,11(上下一行),我就知道两个节点是连接的。

我使用递归进行主搜索。它从wordList中取出一个单词,找到所有可能的起点,然后递归地找到下一个可能的连接,记住它不能去到它已经使用的位置(这就是为什么我添加$notInLoc)。

无论如何,我知道它需要一些重构,并且希望听到关于如何使它更干净的想法,但是它根据我使用的字典文件产生了正确的结果。根据黑板上元音和组合的数量,大约需要3到6秒。我知道,一旦我对字典结果进行预匹配,这将显著减少。

<?php
    ini_set('xdebug.var_display_max_depth', 20);
    ini_set('xdebug.var_display_max_children', 1024);
    ini_set('xdebug.var_display_max_data', 1024);

    class Node {
        var $loc;

        function __construct($value) {
            $this->value = $value;
            $next = null;
        }
    }

    class Boggle {
        var $root;
        var $locList = array (1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34);
        var $wordList = [];
        var $foundWords = [];

        function __construct($board) {
            // Takes in a board string and creates all the nodes
            $node = new Node($board[0]);
            $node->loc = $this->locList[0];
            $this->root = $node;
            for ($i = 1; $i < strlen($board); $i++) {
                    $node->next = new Node($board[$i]);
                    $node->next->loc = $this->locList[$i];
                    $node = $node->next;
            }
            // Load in a dictionary file
            // Use regexp to elimate all the words that could never appear and load the 
            // rest of the words into wordList
            $handle = fopen("dict.txt", "r");
            if ($handle) {
                while (($line = fgets($handle)) !== false) {
                    // process the line read.
                    $line = trim($line);
                    if (strlen($line) > 2) {
                        $this->wordList[] = trim($line);
                    }
                }
                fclose($handle);
            } else {
                // error opening the file.
                echo "Problem with the file.";
            } 
        }

        function isConnected($node1, $node2) {
        // Determines if 2 nodes are connected on the boggle board

            return (($node1->loc == $node2->loc + 1) || ($node1->loc == $node2->loc - 1) ||
               ($node1->loc == $node2->loc - 9) || ($node1->loc == $node2->loc - 10) || ($node1->loc == $node2->loc - 11) ||
               ($node1->loc == $node2->loc + 9) || ($node1->loc == $node2->loc + 10) || ($node1->loc == $node2->loc + 11)) ? true : false;

        }

        function find($value, $notInLoc = []) {
            // Returns a node with the value that isn't in a location
            $current = $this->root;
            while($current) {
                if ($current->value == $value && !in_array($current->loc, $notInLoc)) {
                    return $current;
                }
                if (isset($current->next)) {
                    $current = $current->next;
                } else {
                    break;
                }
            }
            return false;
        }

        function findAll($value) {
            // Returns an array of nodes with a specific value
            $current = $this->root;
            $foundNodes = [];
            while ($current) {
                if ($current->value == $value) {
                    $foundNodes[] = $current;
                }
                if (isset($current->next)) {
                    $current = $current->next;
                } else {
                    break;
                }
            }
            return (empty($foundNodes)) ? false : $foundNodes;
        }

        function findAllConnectedTo($node, $value, $notInLoc = []) {
            // Returns an array of nodes that are connected to a specific node and 
            // contain a specific value and are not in a certain location
            $nodeList = $this->findAll($value);
            $newList = [];
            if ($nodeList) {
                foreach ($nodeList as $node2) {
                    if (!in_array($node2->loc, $notInLoc) && $this->isConnected($node, $node2)) {
                        $newList[] = $node2;
                    }
                }
            }
            return (empty($newList)) ? false : $newList;
        }



        function inner($word, $list, $i = 0, $notInLoc = []) {
            $i++;
            foreach($list as $node) {
                $notInLoc[] = $node->loc;
                if ($list2 = $this->findAllConnectedTo($node, $word[$i], $notInLoc)) {
                    if ($i == (strlen($word) - 1)) {
                        return true;
                    } else {
                        return $this->inner($word, $list2, $i, $notInLoc);
                    }
                }
            }
            return false;
        }

        function findWord($word) {
            if ($list = $this->findAll($word[0])) {
                return $this->inner($word, $list);
            }
            return false;
        }

        function findAllWords() {
            foreach($this->wordList as $word) {
                if ($this->findWord($word)) {
                    $this->foundWords[] = $word;
                }
            }
        }

        function displayBoard() {
            $current = $this->root;
            for ($i=0; $i < 4; $i++) {
                echo $current->value . " " . $current->next->value . " " . $current->next->next->value . " " . $current->next->next->next->value . "<br />";
                if ($i < 3) {
                    $current = $current->next->next->next->next;
                }
            }
        }

    }

    function randomBoardString() {
        return substr(str_shuffle(str_repeat("abcdefghijklmnopqrstuvwxyz", 16)), 0, 16);
    }

    $myBoggle = new Boggle(randomBoardString());
    $myBoggle->displayBoard();
    $x = microtime(true);
    $myBoggle->findAllWords();
    $y = microtime(true);
    echo ($y-$x);
    var_dump($myBoggle->foundWords);

    ?>

其他回答

对VB不感兴趣?:)我忍不住了。我解决这个问题的方法不同于这里提出的许多解决方案。

我的时间是:

将字典和单词前缀加载到哈希表:.5到1秒。 找单词:平均不到10毫秒。

编辑:web主机服务器上的字典加载时间比我的家用电脑长1到1.5秒。

我不知道随着服务器负载的增加,时间会恶化到什么程度。

我把我的解决方案写成了。net的网页。myvrad.com/boggle

我用的是原题中提到的字典。

字母在单词中不能重复使用。只找到3个字符或以上的单词。

我使用所有唯一的单词前缀和单词的哈希表,而不是一个trie。我不知道什么是trie,所以我学到了一些东西。除了完整的单词之外,创建单词前缀列表的想法最终使我的时间减少到一个可观的数字。

阅读代码注释以获得更多详细信息。

代码如下:

Imports System.Collections.Generic
Imports System.IO

Partial Class boggle_Default

    'Bob Archer, 4/15/2009

    'To avoid using a 2 dimensional array in VB I'm not using typical X,Y
    'coordinate iteration to find paths.
    '
    'I have locked the code into a 4 by 4 grid laid out like so:
    ' abcd
    ' efgh
    ' ijkl
    ' mnop
    ' 
    'To find paths the code starts with a letter from a to p then
    'explores the paths available around it. If a neighboring letter
    'already exists in the path then we don't go there.
    '
    'Neighboring letters (grid points) are hard coded into
    'a Generic.Dictionary below.



    'Paths is a list of only valid Paths found. 
    'If a word prefix or word is not found the path is not
    'added and extending that path is terminated.
    Dim Paths As New Generic.List(Of String)

    'NeighborsOf. The keys are the letters a to p.
    'The value is a string of letters representing neighboring letters.
    'The string of neighboring letters is split and iterated later.
    Dim NeigborsOf As New Generic.Dictionary(Of String, String)

    'BoggleLetters. The keys are mapped to the lettered grid of a to p.
    'The values are what the user inputs on the page.
    Dim BoggleLetters As New Generic.Dictionary(Of String, String)

    'Used to store last postition of path. This will be a letter
    'from a to p.
    Dim LastPositionOfPath As String = ""

    'I found a HashTable was by far faster than a Generic.Dictionary 
    ' - about 10 times faster. This stores prefixes of words and words.
    'I determined 792773 was the number of words and unique prefixes that
    'will be generated from the dictionary file. This is a max number and
    'the final hashtable will not have that many.
    Dim HashTableOfPrefixesAndWords As New Hashtable(792773)

    'Stores words that are found.
    Dim FoundWords As New Generic.List(Of String)

    'Just to validate what the user enters in the grid.
    Dim ErrorFoundWithSubmittedLetters As Boolean = False

    Public Sub BuildAndTestPathsAndFindWords(ByVal ThisPath As String)
        'Word is the word correlating to the ThisPath parameter.
        'This path would be a series of letters from a to p.
        Dim Word As String = ""

        'The path is iterated through and a word based on the actual
        'letters in the Boggle grid is assembled.
        For i As Integer = 0 To ThisPath.Length - 1
            Word += Me.BoggleLetters(ThisPath.Substring(i, 1))
        Next

        'If my hashtable of word prefixes and words doesn't contain this Word
        'Then this isn't a word and any further extension of ThisPath will not
        'yield any words either. So exit sub to terminate exploring this path.
        If Not HashTableOfPrefixesAndWords.ContainsKey(Word) Then Exit Sub

        'The value of my hashtable is a boolean representing if the key if a word (true) or
        'just a prefix (false). If true and at least 3 letters long then yay! word found.
        If HashTableOfPrefixesAndWords(Word) AndAlso Word.Length > 2 Then Me.FoundWords.Add(Word)

        'If my List of Paths doesn't contain ThisPath then add it.
        'Remember only valid paths will make it this far. Paths not found
        'in the HashTableOfPrefixesAndWords cause this sub to exit above.
        If Not Paths.Contains(ThisPath) Then Paths.Add(ThisPath)

        'Examine the last letter of ThisPath. We are looking to extend the path
        'to our neighboring letters if any are still available.
        LastPositionOfPath = ThisPath.Substring(ThisPath.Length - 1, 1)

        'Loop through my list of neighboring letters (representing grid points).
        For Each Neighbor As String In Me.NeigborsOf(LastPositionOfPath).ToCharArray()
            'If I find a neighboring grid point that I haven't already used
            'in ThisPath then extend ThisPath and feed the new path into
            'this recursive function. (see recursive.)
            If Not ThisPath.Contains(Neighbor) Then Me.BuildAndTestPathsAndFindWords(ThisPath & Neighbor)
        Next
    End Sub

    Protected Sub ButtonBoggle_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles ButtonBoggle.Click

        'User has entered the 16 letters and clicked the go button.

        'Set up my Generic.Dictionary of grid points, I'm using letters a to p -
        'not an x,y grid system.  The values are neighboring points.
        NeigborsOf.Add("a", "bfe")
        NeigborsOf.Add("b", "cgfea")
        NeigborsOf.Add("c", "dhgfb")
        NeigborsOf.Add("d", "hgc")
        NeigborsOf.Add("e", "abfji")
        NeigborsOf.Add("f", "abcgkjie")
        NeigborsOf.Add("g", "bcdhlkjf")
        NeigborsOf.Add("h", "cdlkg")
        NeigborsOf.Add("i", "efjnm")
        NeigborsOf.Add("j", "efgkonmi")
        NeigborsOf.Add("k", "fghlponj")
        NeigborsOf.Add("l", "ghpok")
        NeigborsOf.Add("m", "ijn")
        NeigborsOf.Add("n", "ijkom")
        NeigborsOf.Add("o", "jklpn")
        NeigborsOf.Add("p", "klo")

        'Retrieve letters the user entered.
        BoggleLetters.Add("a", Me.TextBox1.Text.ToLower.Trim())
        BoggleLetters.Add("b", Me.TextBox2.Text.ToLower.Trim())
        BoggleLetters.Add("c", Me.TextBox3.Text.ToLower.Trim())
        BoggleLetters.Add("d", Me.TextBox4.Text.ToLower.Trim())
        BoggleLetters.Add("e", Me.TextBox5.Text.ToLower.Trim())
        BoggleLetters.Add("f", Me.TextBox6.Text.ToLower.Trim())
        BoggleLetters.Add("g", Me.TextBox7.Text.ToLower.Trim())
        BoggleLetters.Add("h", Me.TextBox8.Text.ToLower.Trim())
        BoggleLetters.Add("i", Me.TextBox9.Text.ToLower.Trim())
        BoggleLetters.Add("j", Me.TextBox10.Text.ToLower.Trim())
        BoggleLetters.Add("k", Me.TextBox11.Text.ToLower.Trim())
        BoggleLetters.Add("l", Me.TextBox12.Text.ToLower.Trim())
        BoggleLetters.Add("m", Me.TextBox13.Text.ToLower.Trim())
        BoggleLetters.Add("n", Me.TextBox14.Text.ToLower.Trim())
        BoggleLetters.Add("o", Me.TextBox15.Text.ToLower.Trim())
        BoggleLetters.Add("p", Me.TextBox16.Text.ToLower.Trim())

        'Validate user entered something with a length of 1 for all 16 textboxes.
        For Each S As String In BoggleLetters.Keys
            If BoggleLetters(S).Length <> 1 Then
                ErrorFoundWithSubmittedLetters = True
                Exit For
            End If
        Next

        'If input is not valid then...
        If ErrorFoundWithSubmittedLetters Then
            'Present error message.
        Else
            'Else assume we have 16 letters to work with and start finding words.
            Dim SB As New StringBuilder

            Dim Time As String = String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString())

            Dim NumOfLetters As Integer = 0
            Dim Word As String = ""
            Dim TempWord As String = ""
            Dim Letter As String = ""
            Dim fr As StreamReader = Nothing
            fr = New System.IO.StreamReader(HttpContext.Current.Request.MapPath("~/boggle/dic.txt"))

            'First fill my hashtable with word prefixes and words.
            'HashTable(PrefixOrWordString, BooleanTrueIfWordFalseIfPrefix)
            While fr.Peek <> -1
                Word = fr.ReadLine.Trim()
                TempWord = ""
                For i As Integer = 0 To Word.Length - 1
                    Letter = Word.Substring(i, 1)
                    'This optimization helped quite a bit. Words in the dictionary that begin
                    'with letters that the user did not enter in the grid shouldn't go in my hashtable.
                    '
                    'I realize most of the solutions went with a Trie. I'd never heard of that before,
                    'which is one of the neat things about SO, seeing how others approach challenges
                    'and learning some best practices.
                    '
                    'However, I didn't code a Trie in my solution. I just have a hashtable with 
                    'all words in the dicitonary file and all possible prefixes for those words.
                    'A Trie might be faster but I'm not coding it now. I'm getting good times with this.
                    If i = 0 AndAlso Not BoggleLetters.ContainsValue(Letter) Then Continue While
                    TempWord += Letter
                    If Not HashTableOfPrefixesAndWords.ContainsKey(TempWord) Then
                        HashTableOfPrefixesAndWords.Add(TempWord, TempWord = Word)
                    End If
                Next
            End While

            SB.Append("Number of Word Prefixes and Words in Hashtable: " & HashTableOfPrefixesAndWords.Count.ToString())
            SB.Append("<br />")

            SB.Append("Loading Dictionary: " & Time & " - " & String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString()))
            SB.Append("<br />")

            Time = String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString())

            'This starts a path at each point on the grid an builds a path until 
            'the string of letters correlating to the path is not found in the hashtable
            'of word prefixes and words.
            Me.BuildAndTestPathsAndFindWords("a")
            Me.BuildAndTestPathsAndFindWords("b")
            Me.BuildAndTestPathsAndFindWords("c")
            Me.BuildAndTestPathsAndFindWords("d")
            Me.BuildAndTestPathsAndFindWords("e")
            Me.BuildAndTestPathsAndFindWords("f")
            Me.BuildAndTestPathsAndFindWords("g")
            Me.BuildAndTestPathsAndFindWords("h")
            Me.BuildAndTestPathsAndFindWords("i")
            Me.BuildAndTestPathsAndFindWords("j")
            Me.BuildAndTestPathsAndFindWords("k")
            Me.BuildAndTestPathsAndFindWords("l")
            Me.BuildAndTestPathsAndFindWords("m")
            Me.BuildAndTestPathsAndFindWords("n")
            Me.BuildAndTestPathsAndFindWords("o")
            Me.BuildAndTestPathsAndFindWords("p")

            SB.Append("Finding Words: " & Time & " - " & String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString()))
            SB.Append("<br />")

            SB.Append("Num of words found: " & FoundWords.Count.ToString())
            SB.Append("<br />")
            SB.Append("<br />")

            FoundWords.Sort()
            SB.Append(String.Join("<br />", FoundWords.ToArray()))

            'Output results.
            Me.LiteralBoggleResults.Text = SB.ToString()
            Me.PanelBoggleResults.Visible = True

        End If

    End Sub

End Class

我建议根据单词做一个字母树。这棵树将由字母结构组成,像这样:

letter: char
isWord: boolean

然后构建树,每个深度添加一个新字母。换句话说,第一层是字母表;然后从这些树中,会有另外26个条目,以此类推,直到你把所有的单词都拼出来。坚持这个解析树,它将使所有可能的答案更快地查找。

使用这个解析过的树,您可以非常快速地找到解决方案。下面是伪代码:

BEGIN: 
    For each letter:
        if the struct representing it on the current depth has isWord == true, enter it as an answer.
        Cycle through all its neighbors; if there is a child of the current node corresponding to the letter, recursively call BEGIN on it.

这可以通过一些动态编程来加快。例如,在你的样本中,两个“A”都在一个“E”和一个“W”旁边,这(从它们击中它们的点来看)是相同的。我没有足够的时间来详细说明这个代码,但我想你们可以理解。

此外,我相信你会找到其他解决方案,如果你谷歌“Boggle solver”。

一个Node.JS JavaScript解决方案。在不到一秒钟的时间内计算所有100个独特的单词,其中包括阅读字典文件(MBA 2012)。

Output: ["FAM","TUX","TUB","FAE","ELI","ELM","ELB","TWA","TWA","SAW","AMI","SWA","SWA","AME","SEA","SEW","AES","AWL","AWE","SEA","AWA","MIX","MIL","AST","ASE","MAX","MAE","MAW","MEW","AWE","MES","AWL","LIE","LIM","AWA","AES","BUT","BLO","WAS","WAE","WEA","LEI","LEO","LOB","LOX","WEM","OIL","OLM","WEA","WAE","WAX","WAF","MILO","EAST","WAME","TWAS","TWAE","EMIL","WEAM","OIME","AXIL","WEST","TWAE","LIMB","WASE","WAST","BLEO","STUB","BOIL","BOLE","LIME","SAWT","LIMA","MESA","MEWL","AXLE","FAME","ASEM","MILE","AMIL","SEAX","SEAM","SEMI","SWAM","AMBO","AMLI","AXILE","AMBLE","SWAMI","AWEST","AWEST","LIMAX","LIMES","LIMBU","LIMBO","EMBOX","SEMBLE","EMBOLE","WAMBLE","FAMBLE"]

代码:

var fs = require('fs')

var Node = function(value, row, col) {
    this.value = value
    this.row = row
    this.col = col
}

var Path = function() {
    this.nodes = []
}

Path.prototype.push = function(node) {
    this.nodes.push(node)
    return this
}

Path.prototype.contains = function(node) {
    for (var i = 0, ii = this.nodes.length; i < ii; i++) {
        if (this.nodes[i] === node) {
            return true
        }
    }

    return false
}

Path.prototype.clone = function() {
    var path = new Path()
    path.nodes = this.nodes.slice(0)
    return path
}

Path.prototype.to_word = function() {
    var word = ''

    for (var i = 0, ii = this.nodes.length; i < ii; ++i) {
        word += this.nodes[i].value
    }

    return word
}

var Board = function(nodes, dict) {
    // Expects n x m array.
    this.nodes = nodes
    this.words = []
    this.row_count = nodes.length
    this.col_count = nodes[0].length
    this.dict = dict
}

Board.from_raw = function(board, dict) {
    var ROW_COUNT = board.length
      , COL_COUNT = board[0].length

    var nodes = []

    // Replace board with Nodes
    for (var i = 0, ii = ROW_COUNT; i < ii; ++i) {
        nodes.push([])
        for (var j = 0, jj = COL_COUNT; j < jj; ++j) {
            nodes[i].push(new Node(board[i][j], i, j))
        }
    }

    return new Board(nodes, dict)
}

Board.prototype.toString = function() {
    return JSON.stringify(this.nodes)
}

Board.prototype.update_potential_words = function(dict) {
    for (var i = 0, ii = this.row_count; i < ii; ++i) {
        for (var j = 0, jj = this.col_count; j < jj; ++j) {
            var node = this.nodes[i][j]
              , path = new Path()

            path.push(node)

            this.dfs_search(path)
        }
    }
}

Board.prototype.on_board = function(row, col) {
    return 0 <= row && row < this.row_count && 0 <= col && col < this.col_count
}

Board.prototype.get_unsearched_neighbours = function(path) {
    var last_node = path.nodes[path.nodes.length - 1]

    var offsets = [
        [-1, -1], [-1,  0], [-1, +1]
      , [ 0, -1],           [ 0, +1]
      , [+1, -1], [+1,  0], [+1, +1]
    ]

    var neighbours = []

    for (var i = 0, ii = offsets.length; i < ii; ++i) {
        var offset = offsets[i]
        if (this.on_board(last_node.row + offset[0], last_node.col + offset[1])) {

            var potential_node = this.nodes[last_node.row + offset[0]][last_node.col + offset[1]]
            if (!path.contains(potential_node)) {
                // Create a new path if on board and we haven't visited this node yet.
                neighbours.push(potential_node)
            }
        }
    }

    return neighbours
}

Board.prototype.dfs_search = function(path) {
    var path_word = path.to_word()

    if (this.dict.contains_exact(path_word) && path_word.length >= 3) {
        this.words.push(path_word)
    }

    var neighbours = this.get_unsearched_neighbours(path)

    for (var i = 0, ii = neighbours.length; i < ii; ++i) {
        var neighbour = neighbours[i]
        var new_path = path.clone()
        new_path.push(neighbour)

        if (this.dict.contains_prefix(new_path.to_word())) {
            this.dfs_search(new_path)
        }
    }
}

var Dict = function() {
    this.dict_array = []

    var dict_data = fs.readFileSync('./web2', 'utf8')
    var dict_array = dict_data.split('\n')

    for (var i = 0, ii = dict_array.length; i < ii; ++i) {
        dict_array[i] = dict_array[i].toUpperCase()
    }

    this.dict_array = dict_array.sort()
}

Dict.prototype.contains_prefix = function(prefix) {
    // Binary search
    return this.search_prefix(prefix, 0, this.dict_array.length)
}

Dict.prototype.contains_exact = function(exact) {
    // Binary search
    return this.search_exact(exact, 0, this.dict_array.length)
}

Dict.prototype.search_prefix = function(prefix, start, end) {
    if (start >= end) {
        // If no more place to search, return no matter what.
        return this.dict_array[start].indexOf(prefix) > -1
    }

    var middle = Math.floor((start + end)/2)

    if (this.dict_array[middle].indexOf(prefix) > -1) {
        // If we prefix exists, return true.
        return true
    } else {
        // Recurse
        if (prefix <= this.dict_array[middle]) {
            return this.search_prefix(prefix, start, middle - 1)
        } else {
            return this.search_prefix(prefix, middle + 1, end)
        }
    }
}

Dict.prototype.search_exact = function(exact, start, end) {
    if (start >= end) {
        // If no more place to search, return no matter what.
        return this.dict_array[start] === exact
    }

    var middle = Math.floor((start + end)/2)

    if (this.dict_array[middle] === exact) {
        // If we prefix exists, return true.
        return true
    } else {
        // Recurse
        if (exact <= this.dict_array[middle]) {
            return this.search_exact(exact, start, middle - 1)
        } else {
            return this.search_exact(exact, middle + 1, end)
        }
    }
}

var board = [
    ['F', 'X', 'I', 'E']
  , ['A', 'M', 'L', 'O']
  , ['E', 'W', 'B', 'X']
  , ['A', 'S', 'T', 'U']
]

var dict = new Dict()

var b = Board.from_raw(board, dict)
b.update_potential_words()
console.log(JSON.stringify(b.words.sort(function(a, b) {
    return a.length - b.length
})))

我认为你可能会花大部分时间去匹配那些不可能由你的字母网格构成的单词。所以,我要做的第一件事就是加快这一步,这应该能让你大致达到目的。

为此,我将把网格重新表示为一个可能的“移动”表,您可以根据您正在查看的字母转换对其进行索引。

首先从你的字母表中给每个字母分配一个数字(a =0, B=1, C=2,…等等)。

让我们举个例子:

h b c d
e e g h
l l k l
m o f p

现在,让我们使用现有字母的字母表(通常你可能每次都想使用相同的字母表):

 b | c | d | e | f | g | h | k | l | m |  o |  p
---+---+---+---+---+---+---+---+---+---+----+----
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11

然后你创建一个2D布尔数组,告诉你是否有某个字母转换可用:

     |  0  1  2  3  4  5  6  7  8  9 10 11  <- from letter
     |  b  c  d  e  f  g  h  k  l  m  o  p
-----+--------------------------------------
 0 b |     T     T     T  T     
 1 c |  T     T  T     T  T
 2 d |     T           T  T
 3 e |  T  T     T     T  T  T  T
 4 f |                       T  T     T  T
 5 g |  T  T  T  T        T  T  T
 6 h |  T  T  T  T     T     T  T
 7 k |           T  T  T  T     T     T  T
 8 l |           T  T  T  T  T  T  T  T  T
 9 m |                          T     T
10 o |              T        T  T  T
11 p |              T        T  T
 ^
 to letter

现在浏览单词列表,将单词转换为过渡段:

hello (6, 3, 8, 8, 10):
6 -> 3, 3 -> 8, 8 -> 8, 8 -> 10

然后检查这些转换是否允许通过在你的表中查找它们:

[6][ 3] : T
[3][ 8] : T
[8][ 8] : T
[8][10] : T

如果它们都被允许,就有可能找到这个词。

例如,单词“头盔”可以在第4个转换(m到e:头盔)时被排除,因为表中的这个条目是假的。

单词hamster可以被排除,因为第一个(h到a)的转换是不允许的(在你的表中甚至不存在)。

现在,对于可能剩下的很少几个你没有删除的单词,试着按照你现在做的方法或在这里的其他答案中建议的方法在网格中找到它们。这是为了避免网格中相同字母之间的跳转导致的误报。例如,表格允许使用单词“help”,但网格不允许。

关于这个想法的一些进一步的性能改进技巧:

Instead of using a 2D array, use a 1D array and simply compute the index of the second letter yourself. So, instead of a 12x12 array like above, make a 1D array of length 144. If you then always use the same alphabet (i.e. a 26x26 = 676x1 array for the standard english alphabet), even if not all letters show up in your grid, you can pre-compute the indices into this 1D array that you need to test to match your dictionary words. For example, the indices for 'hello' in the example above would be hello (6, 3, 8, 8, 10): 42 (from 6 + 3x12), 99, 104, 128 -> "hello" will be stored as 42, 99, 104, 128 in the dictionary Extend the idea to a 3D table (expressed as a 1D array), i.e. all allowed 3-letter combinations. That way you can eliminate even more words immediately and you reduce the number of array lookups for each word by 1: For 'hello', you only need 3 array lookups: hel, ell, llo. It will be very quick to build this table, by the way, as there are only 400 possible 3-letter-moves in your grid. Pre-compute the indices of the moves in your grid that you need to include in your table. For the example above, you need to set the following entries to 'True': (0,0) (0,1) -> here: h, b : [6][0] (0,0) (1,0) -> here: h, e : [6][3] (0,0) (1,1) -> here: h, e : [6][3] (0,1) (0,0) -> here: b, h : [0][6] (0,1) (0,2) -> here: b, c : [0][1] . : Also represent your game grid in a 1-D array with 16 entries and have the table pre-computed in 3. contain the indices into this array.

我相信如果您使用这种方法,您可以让您的代码运行得非常快,如果您预先计算了字典并已经加载到内存中。

顺便说一句:如果你正在创造一款游戏,你可以在后台立即运行这些内容。在用户仍然盯着你的应用标题屏幕,并将手指放在按“Play”的位置时开始生成和解决第一款游戏。然后在用户玩前一款游戏时生成并解决下一款游戏。这应该会给您很多时间来运行代码。

(我喜欢这个问题,所以我可能会忍不住在未来几天的某个时候用Java实现我的提议,看看它实际上是如何执行的……一旦我这样做,我将在这里张贴代码。)

更新:

好的,我今天有一些时间在Java中实现了这个想法:

class DictionaryEntry {
  public int[] letters;
  public int[] triplets;
}

class BoggleSolver {

  // Constants
  final int ALPHABET_SIZE = 5;  // up to 2^5 = 32 letters
  final int BOARD_SIZE    = 4;  // 4x4 board
  final int[] moves = {-BOARD_SIZE-1, -BOARD_SIZE, -BOARD_SIZE+1, 
                                  -1,                         +1,
                       +BOARD_SIZE-1, +BOARD_SIZE, +BOARD_SIZE+1};


  // Technically constant (calculated here for flexibility, but should be fixed)
  DictionaryEntry[] dictionary; // Processed word list
  int maxWordLength = 0;
  int[] boardTripletIndices; // List of all 3-letter moves in board coordinates

  DictionaryEntry[] buildDictionary(String fileName) throws IOException {
    BufferedReader fileReader = new BufferedReader(new FileReader(fileName));
    String word = fileReader.readLine();
    ArrayList<DictionaryEntry> result = new ArrayList<DictionaryEntry>();
    while (word!=null) {
      if (word.length()>=3) {
        word = word.toUpperCase();
        if (word.length()>maxWordLength) maxWordLength = word.length();
        DictionaryEntry entry = new DictionaryEntry();
        entry.letters  = new int[word.length()  ];
        entry.triplets = new int[word.length()-2];
        int i=0;
        for (char letter: word.toCharArray()) {
          entry.letters[i] = (byte) letter - 65; // Convert ASCII to 0..25
          if (i>=2)
            entry.triplets[i-2] = (((entry.letters[i-2]  << ALPHABET_SIZE) +
                                     entry.letters[i-1]) << ALPHABET_SIZE) +
                                     entry.letters[i];
          i++;
        }
        result.add(entry);
      }
      word = fileReader.readLine();
    }
    return result.toArray(new DictionaryEntry[result.size()]);
  }

  boolean isWrap(int a, int b) { // Checks if move a->b wraps board edge (like 3->4)
    return Math.abs(a%BOARD_SIZE-b%BOARD_SIZE)>1;
  }

  int[] buildTripletIndices() {
    ArrayList<Integer> result = new ArrayList<Integer>();
    for (int a=0; a<BOARD_SIZE*BOARD_SIZE; a++)
      for (int bm: moves) {
        int b=a+bm;
        if ((b>=0) && (b<board.length) && !isWrap(a, b))
          for (int cm: moves) {
            int c=b+cm;
            if ((c>=0) && (c<board.length) && (c!=a) && !isWrap(b, c)) {
              result.add(a);
              result.add(b);
              result.add(c);
            }
          }
      }
    int[] result2 = new int[result.size()];
    int i=0;
    for (Integer r: result) result2[i++] = r;
    return result2;
  }


  // Variables that depend on the actual game layout
  int[] board = new int[BOARD_SIZE*BOARD_SIZE]; // Letters in board
  boolean[] possibleTriplets = new boolean[1 << (ALPHABET_SIZE*3)];

  DictionaryEntry[] candidateWords;
  int candidateCount;

  int[] usedBoardPositions;

  DictionaryEntry[] foundWords;
  int foundCount;

  void initializeBoard(String[] letters) {
    for (int row=0; row<BOARD_SIZE; row++)
      for (int col=0; col<BOARD_SIZE; col++)
        board[row*BOARD_SIZE + col] = (byte) letters[row].charAt(col) - 65;
  }

  void setPossibleTriplets() {
    Arrays.fill(possibleTriplets, false); // Reset list
    int i=0;
    while (i<boardTripletIndices.length) {
      int triplet = (((board[boardTripletIndices[i++]]  << ALPHABET_SIZE) +
                       board[boardTripletIndices[i++]]) << ALPHABET_SIZE) +
                       board[boardTripletIndices[i++]];
      possibleTriplets[triplet] = true; 
    }
  }

  void checkWordTriplets() {
    candidateCount = 0;
    for (DictionaryEntry entry: dictionary) {
      boolean ok = true;
      int len = entry.triplets.length;
      for (int t=0; (t<len) && ok; t++)
        ok = possibleTriplets[entry.triplets[t]];
      if (ok) candidateWords[candidateCount++] = entry;
    }
  }

  void checkWords() { // Can probably be optimized a lot
    foundCount = 0;
    for (int i=0; i<candidateCount; i++) {
      DictionaryEntry candidate = candidateWords[i];
      for (int j=0; j<board.length; j++)
        if (board[j]==candidate.letters[0]) { 
          usedBoardPositions[0] = j;
          if (checkNextLetters(candidate, 1, j)) {
            foundWords[foundCount++] = candidate;
            break;
          }
        }
    }
  }

  boolean checkNextLetters(DictionaryEntry candidate, int letter, int pos) {
    if (letter==candidate.letters.length) return true;
    int match = candidate.letters[letter];
    for (int move: moves) {
      int next=pos+move;
      if ((next>=0) && (next<board.length) && (board[next]==match) && !isWrap(pos, next)) {
        boolean ok = true;
        for (int i=0; (i<letter) && ok; i++)
          ok = usedBoardPositions[i]!=next;
        if (ok) {
          usedBoardPositions[letter] = next;
          if (checkNextLetters(candidate, letter+1, next)) return true;
        }
      }
    }   
    return false;
  }


  // Just some helper functions
  String formatTime(long start, long end, long repetitions) {
    long time = (end-start)/repetitions;
    return time/1000000 + "." + (time/100000) % 10 + "" + (time/10000) % 10 + "ms";
  }

  String getWord(DictionaryEntry entry) {
    char[] result = new char[entry.letters.length];
    int i=0;
    for (int letter: entry.letters)
      result[i++] = (char) (letter+97);
    return new String(result);
  }

  void run() throws IOException {
    long start = System.nanoTime();

    // The following can be pre-computed and should be replaced by constants
    dictionary = buildDictionary("C:/TWL06.txt");
    boardTripletIndices = buildTripletIndices();
    long precomputed = System.nanoTime();


    // The following only needs to run once at the beginning of the program
    candidateWords     = new DictionaryEntry[dictionary.length]; // WAAAY too generous
    foundWords         = new DictionaryEntry[dictionary.length]; // WAAAY too generous
    usedBoardPositions = new int[maxWordLength];
    long initialized = System.nanoTime(); 

    for (int n=1; n<=100; n++) {
      // The following needs to run again for every new board
      initializeBoard(new String[] {"DGHI",
                                    "KLPS",
                                    "YEUT",
                                    "EORN"});
      setPossibleTriplets();
      checkWordTriplets();
      checkWords();
    }
    long solved = System.nanoTime();


    // Print out result and statistics
    System.out.println("Precomputation finished in " + formatTime(start, precomputed, 1)+":");
    System.out.println("  Words in the dictionary: "+dictionary.length);
    System.out.println("  Longest word:            "+maxWordLength+" letters");
    System.out.println("  Number of triplet-moves: "+boardTripletIndices.length/3);
    System.out.println();

    System.out.println("Initialization finished in " + formatTime(precomputed, initialized, 1));
    System.out.println();

    System.out.println("Board solved in "+formatTime(initialized, solved, 100)+":");
    System.out.println("  Number of candidates: "+candidateCount);
    System.out.println("  Number of actual words: "+foundCount);
    System.out.println();

    System.out.println("Words found:");
    int w=0;
    System.out.print("  ");
    for (int i=0; i<foundCount; i++) {
      System.out.print(getWord(foundWords[i]));
      w++;
      if (w==10) {
        w=0;
        System.out.println(); System.out.print("  ");
      } else
        if (i<foundCount-1) System.out.print(", ");
    }
    System.out.println();
  }

  public static void main(String[] args) throws IOException {
    new BoggleSolver().run();
  }
}

以下是一些结果:

对于原始问题(DGHI…)中发布的图片的网格:

Precomputation finished in 239.59ms:
  Words in the dictionary: 178590
  Longest word:            15 letters
  Number of triplet-moves: 408

Initialization finished in 0.22ms

Board solved in 3.70ms:
  Number of candidates: 230
  Number of actual words: 163 

Words found:
  eek, eel, eely, eld, elhi, elk, ern, erupt, erupts, euro
  eye, eyer, ghi, ghis, glee, gley, glue, gluer, gluey, glut
  gluts, hip, hiply, hips, his, hist, kelp, kelps, kep, kepi
  kepis, keps, kept, kern, key, kye, lee, lek, lept, leu
  ley, lunt, lunts, lure, lush, lust, lustre, lye, nus, nut
  nuts, ore, ort, orts, ouph, ouphs, our, oust, out, outre
  outs, oyer, pee, per, pert, phi, phis, pis, pish, plus
  plush, ply, plyer, psi, pst, pul, pule, puler, pun, punt
  punts, pur, pure, puree, purely, pus, push, put, puts, ree
  rely, rep, reply, reps, roe, roue, roup, roups, roust, rout
  routs, rue, rule, ruly, run, runt, runts, rupee, rush, rust
  rut, ruts, ship, shlep, sip, sipe, spue, spun, spur, spurn
  spurt, strep, stroy, stun, stupe, sue, suer, sulk, sulker, sulky
  sun, sup, supe, super, sure, surely, tree, trek, trey, troupe
  troy, true, truly, tule, tun, tup, tups, turn, tush, ups
  urn, uts, yeld, yelk, yelp, yelps, yep, yeps, yore, you
  your, yourn, yous

对于在原始问题中作为示例发布的信件(FXIE…)

Precomputation finished in 239.68ms:
  Words in the dictionary: 178590
  Longest word:            15 letters
  Number of triplet-moves: 408

Initialization finished in 0.21ms

Board solved in 3.69ms:
  Number of candidates: 87
  Number of actual words: 76

Words found:
  amble, ambo, ami, amie, asea, awa, awe, awes, awl, axil
  axile, axle, boil, bole, box, but, buts, east, elm, emboli
  fame, fames, fax, lei, lie, lima, limb, limbo, limbs, lime
  limes, lob, lobs, lox, mae, maes, maw, maws, max, maxi
  mesa, mew, mewl, mews, mil, mile, milo, mix, oil, ole
  sae, saw, sea, seam, semi, sew, stub, swam, swami, tub
  tubs, tux, twa, twae, twaes, twas, uts, wae, waes, wamble
  wame, wames, was, wast, wax, west

对于以下5x5网格:

R P R I T
A H H L N
I E T E P
Z R Y S G
O G W E Y

它给出了这个:

Precomputation finished in 240.39ms:
  Words in the dictionary: 178590
  Longest word:            15 letters
  Number of triplet-moves: 768

Initialization finished in 0.23ms

Board solved in 3.85ms:
  Number of candidates: 331
  Number of actual words: 240

Words found:
  aero, aery, ahi, air, airt, airth, airts, airy, ear, egest
  elhi, elint, erg, ergo, ester, eth, ether, eye, eyen, eyer
  eyes, eyre, eyrie, gel, gelt, gelts, gen, gent, gentil, gest
  geste, get, gets, gey, gor, gore, gory, grey, greyest, greys
  gyre, gyri, gyro, hae, haet, haets, hair, hairy, hap, harp
  heap, hear, heh, heir, help, helps, hen, hent, hep, her
  hero, hes, hest, het, hetero, heth, hets, hey, hie, hilt
  hilts, hin, hint, hire, hit, inlet, inlets, ire, leg, leges
  legs, lehr, lent, les, lest, let, lethe, lets, ley, leys
  lin, line, lines, liney, lint, lit, neg, negs, nest, nester
  net, nether, nets, nil, nit, ogre, ore, orgy, ort, orts
  pah, pair, par, peg, pegs, peh, pelt, pelter, peltry, pelts
  pen, pent, pes, pest, pester, pesty, pet, peter, pets, phi
  philter, philtre, phiz, pht, print, pst, rah, rai, rap, raphe
  raphes, reap, rear, rei, ret, rete, rets, rhaphe, rhaphes, rhea
  ria, rile, riles, riley, rin, rye, ryes, seg, sel, sen
  sent, senti, set, sew, spelt, spelter, spent, splent, spline, splint
  split, stent, step, stey, stria, striae, sty, stye, tea, tear
  teg, tegs, tel, ten, tent, thae, the, their, then, these
  thesp, they, thin, thine, thir, thirl, til, tile, tiles, tilt
  tilter, tilth, tilts, tin, tine, tines, tirl, trey, treys, trog
  try, tye, tyer, tyes, tyre, tyro, west, wester, wry, wryest
  wye, wyes, wyte, wytes, yea, yeah, year, yeh, yelp, yelps
  yen, yep, yeps, yes, yester, yet, yew, yews, zero, zori

为此,我使用了TWL06锦标赛拼字词列表,因为原始问题中的链接不再有效。这个文件是1.85MB,所以略短一些。buildDictionary函数抛出所有小于3个字母的单词。

以下是对其性能的一些观察:

It's about 10 times slower than the reported performance of Victor Nicollet's OCaml implementation. Whether this is caused by the different algorithm, the shorter dictionary he used, the fact that his code is compiled and mine runs in a Java virtual machine, or the performance of our computers (mine is an Intel Q6600 @ 2.4MHz running WinXP), I don't know. But it's much faster than the results for the other implementations quoted at the end of the original question. So, whether this algorithm is superior to the trie dictionary or not, I don't know at this point. The table method used in checkWordTriplets() yields a very good approximation to the actual answers. Only 1 in 3-5 words passed by it will fail the checkWords() test (See number of candidates vs. number of actual words above). Something you can't see above: The checkWordTriplets() function takes about 3.65ms and is therefore fully dominant in the search process. The checkWords() function takes up pretty much the remaining 0.05-0.20 ms. The execution time of the checkWordTriplets() function depends linearly on the dictionary size and is virtually independent of board size! The execution time of checkWords() depends on the board size and the number of words not ruled out by checkWordTriplets(). The checkWords() implementation above is the dumbest first version I came up with. It is basically not optimized at all. But compared to checkWordTriplets() it is irrelevant for the total performance of the application, so I didn't worry about it. But, if the board size gets bigger, this function will get slower and slower and will eventually start to matter. Then, it would need to be optimized as well. One nice thing about this code is its flexibility: You can easily change the board size: Update line 10 and the String array passed to initializeBoard(). It can support larger/different alphabets and can handle things like treating 'Qu' as one letter without any performance overhead. To do this, one would need to update line 9 and the couple of places where characters are converted to numbers (currently simply by subtracting 65 from the ASCII value)

好吧,但我觉得现在这篇文章已经足够长了。我当然可以回答你可能有的任何问题,但让我们把它转移到评论。

只是为了好玩,我在bash中实现了一个。 它不是超级快,但很合理。

http://dev.xkyle.com/bashboggle/