如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

如果你对一个更图形化的解决方案感兴趣,甚至在(平面上)旋转的矩形..

演示:https://jsfiddle.net/exodus4d/94mxLvqh/2691/

这个想法是:

将场景转换为原点[0,0] 如果矩形不在平面上,则旋转中心应在 (0,0) 将场景旋转回平面 计算交点

const hasIntersection = ({x: cx, y: cy, r: cr}, {x, y, width, height}) => { const distX = Math.abs(cx - x - width / 2); const distY = Math.abs(cy - y - height / 2); if (distX > (width / 2 + cr)) { return false; } if (distY > (height / 2 + cr)) { return false; } if (distX <= (width / 2)) { return true; } if (distY <= (height / 2)) { return true; } const Δx = distX - width / 2; const Δy = distY - height / 2; return Δx * Δx + Δy * Δy <= cr * cr; }; const rect = new DOMRect(50, 20, 100, 50); const circ1 = new DOMPoint(160, 80); circ1.r = 20; const circ2 = new DOMPoint(80, 95); circ2.r = 20; const canvas = document.getElementById('canvas'); const ctx = canvas.getContext('2d'); ctx.strokeRect(rect.x, rect.y, rect.width, rect.height); ctx.beginPath(); ctx.strokeStyle = hasIntersection(circ1, rect) ? 'red' : 'green'; ctx.arc(circ1.x, circ1.y, circ1.r, 0, 2 * Math.PI); ctx.stroke(); ctx.beginPath(); ctx.strokeStyle = hasIntersection(circ2, rect) ? 'red' : 'green'; ctx.arc(circ2.x, circ2.y, circ2.r, 0, 2 * Math.PI); ctx.stroke(); <canvas id="canvas"></canvas>

提示:而不是旋转矩形(4点)。你可以向相反的方向旋转圆(1点)。

其他回答

下面是我的C代码,用于解决球体和非轴对齐的盒子之间的碰撞。它依赖于我自己的几个库例程,但它可能对某些人有用。我在游戏中使用了它,效果非常好。

float physicsProcessCollisionBetweenSelfAndActorRect(SPhysics *self, SPhysics *actor)
{
    float diff = 99999;

    SVector relative_position_of_circle = getDifference2DBetweenVectors(&self->worldPosition, &actor->worldPosition);
    rotateVector2DBy(&relative_position_of_circle, -actor->axis.angleZ); // This aligns the coord system so the rect becomes an AABB

    float x_clamped_within_rectangle = relative_position_of_circle.x;
    float y_clamped_within_rectangle = relative_position_of_circle.y;
    LIMIT(x_clamped_within_rectangle, actor->physicsRect.l, actor->physicsRect.r);
    LIMIT(y_clamped_within_rectangle, actor->physicsRect.b, actor->physicsRect.t);

    // Calculate the distance between the circle's center and this closest point
    float distance_to_nearest_edge_x = relative_position_of_circle.x - x_clamped_within_rectangle;
    float distance_to_nearest_edge_y = relative_position_of_circle.y - y_clamped_within_rectangle;

    // If the distance is less than the circle's radius, an intersection occurs
    float distance_sq_x = SQUARE(distance_to_nearest_edge_x);
    float distance_sq_y = SQUARE(distance_to_nearest_edge_y);
    float radius_sq = SQUARE(self->physicsRadius);
    if(distance_sq_x + distance_sq_y < radius_sq)   
    {
        float half_rect_w = (actor->physicsRect.r - actor->physicsRect.l) * 0.5f;
        float half_rect_h = (actor->physicsRect.t - actor->physicsRect.b) * 0.5f;

        CREATE_VECTOR(push_vector);         

        // If we're at one of the corners of this object, treat this as a circular/circular collision
        if(fabs(relative_position_of_circle.x) > half_rect_w && fabs(relative_position_of_circle.y) > half_rect_h)
        {
            SVector edges;
            if(relative_position_of_circle.x > 0) edges.x = half_rect_w; else edges.x = -half_rect_w;
            if(relative_position_of_circle.y > 0) edges.y = half_rect_h; else edges.y = -half_rect_h;   

            push_vector = relative_position_of_circle;
            moveVectorByInverseVector2D(&push_vector, &edges);

            // We now have the vector from the corner of the rect to the point.
            float delta_length = getVector2DMagnitude(&push_vector);
            float diff = self->physicsRadius - delta_length; // Find out how far away we are from our ideal distance

            // Normalise the vector
            push_vector.x /= delta_length;
            push_vector.y /= delta_length;
            scaleVector2DBy(&push_vector, diff); // Now multiply it by the difference
            push_vector.z = 0;
        }
        else // Nope - just bouncing against one of the edges
        {
            if(relative_position_of_circle.x > 0) // Ball is to the right
                push_vector.x = (half_rect_w + self->physicsRadius) - relative_position_of_circle.x;
            else
                push_vector.x = -((half_rect_w + self->physicsRadius) + relative_position_of_circle.x);

            if(relative_position_of_circle.y > 0) // Ball is above
                push_vector.y = (half_rect_h + self->physicsRadius) - relative_position_of_circle.y;
            else
                push_vector.y = -((half_rect_h + self->physicsRadius) + relative_position_of_circle.y);

            if(fabs(push_vector.x) < fabs(push_vector.y))
                push_vector.y = 0;
            else
                push_vector.x = 0;
        }

        diff = 0; // Cheat, since we don't do anything with the value anyway
        rotateVector2DBy(&push_vector, actor->axis.angleZ);
        SVector *from = &self->worldPosition;       
        moveVectorBy2D(from, push_vector.x, push_vector.y);
    }   
    return diff;
}

有一种非常简单的方法来做到这一点,你必须在x和y上夹住一个点,但在正方形内部,当圆心在一个垂直轴上的两个正方形边界点之间时,你需要将这些坐标夹到平行轴上,只是要确保夹住的坐标不超过正方形的限制。 然后只需得到圆心与夹紧坐标之间的距离,并检查距离是否小于圆的半径。

以下是我是如何做到的(前4个点是方坐标,其余是圆点):

bool DoesCircleImpactBox(float x, float y, float x1, float y1, float xc, float yc, float radius){
    float ClampedX=0;
    float ClampedY=0;
    
    if(xc>=x and xc<=x1){
    ClampedX=xc;
    }
    
    if(yc>=y and yc<=y1){
    ClampedY=yc;
    }
    
    radius = radius+1;
    
    if(xc<x) ClampedX=x;
    if(xc>x1) ClampedX=x1-1;
    if(yc<y) ClampedY=y;
    if(yc>y1) ClampedY=y1-1;
    
    float XDif=ClampedX-xc;
    XDif=XDif*XDif;
    float YDif=ClampedY-yc;
    YDif=YDif*YDif;
    
    if(XDif+YDif<=radius*radius) return true;
    
    return false;
}

为我工作(只工作时,矩形的角度是180)

function intersects(circle, rect) {
  let left = rect.x + rect.width > circle.x - circle.radius;
  let right = rect.x < circle.x + circle.radius;
  let top = rect.y < circle.y + circle.radius;
  let bottom = rect.y + rect.height > circle.y - circle.radius;
  return left && right && bottom && top;
}

我的方法:

从OBB /矩形上/中的圆计算closest_point (最近点将位于边缘/角落或内部) 计算从closest_point到圆心的squared_distance (距离的平方避免了平方根) 返回squared_distance <=圆半径的平方

预检查一个完全封装矩形的圆是否与矩形发生碰撞。 检查圆内的矩形角。 对于每条边,看看是否有一条线与圆相交。将中心点C投影到直线AB上,得到点d。如果CD的长度小于半径,则发生了碰撞。

    projectionScalar=dot(AC,AB)/(mag(AC)*mag(AB));
    if(projectionScalar>=0 && projectionScalar<=1) {
        D=A+AB*projectionScalar;
        CD=D-C;
        if(mag(CD)<circle.radius){
            // there was a collision
        }
    }