假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
当前回答
下面是一个python实现:
graph = {'A': ['B', 'C'],
'B': ['C', 'D'],
'C': ['D'],
'D': ['C'],
'E': ['F'],
'F': ['C']}
def bfs(paths, goal):
if not paths:
raise StopIteration
new_paths = []
for path in paths:
if path[-1] == goal:
yield path
last = path[-1]
for neighbor in graph[last]:
if neighbor not in path:
new_paths.append(path + [neighbor])
yield from bfs(new_paths, goal)
for path in bfs([['A']], 'D'):
print(path)
其他回答
以下是我的完全递归实现的双向图的广度优先搜索的代码,而不使用循环和队列。
public class Graph { public int V; public LinkedList<Integer> adj[]; Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<>(); } void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); } public LinkedList<Integer> getAdjVerted(int vertex) { return adj[vertex]; } public String toString() { String s = ""; for (int i=0;i<adj.length;i++) { s = s +"\n"+i +"-->"+ adj[i] ; } return s; } } //BFS IMPLEMENTATION public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[]) { if (!visited[vertex]) { System.out.print(vertex +" "); visited[vertex] = true; } if(!isAdjPrinted[vertex]) { isAdjPrinted[vertex] = true; List<Integer> adjList = graph.getAdjVerted(vertex); printAdjecent(graph, adjList, visited, 0,isAdjPrinted); } } public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < vertexList.size()) { recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted); recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted); } } public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < list.size()) { if (!visited[list.get(i)]) { System.out.print(list.get(i)+" "); visited[list.get(i)] = true; } printAdjecent(graph, list, visited, i+1, isAdjPrinted); } else { recursiveBFS(graph, list, visited, 0, isAdjPrinted); } }c#实现的递归宽度优先搜索二叉树算法。
二叉树数据可视化
IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
{"A", new [] {"B", "C"}},
{"B", new [] {"D", "E"}},
{"C", new [] {"F", "G"}},
{"E", new [] {"H"}}
};
void Main()
{
var pathFound = BreadthFirstSearch("A", "H", new string[0]);
Console.WriteLine(pathFound); // [A, B, E, H]
var pathNotFound = BreadthFirstSearch("A", "Z", new string[0]);
Console.WriteLine(pathNotFound); // []
}
IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path)
{
if (start == end)
{
return path.Concat(new[] { end });
}
if (!graph.ContainsKey(start)) { return new string[0]; }
return graph[start].SelectMany(letter => BreadthFirstSearch(letter, end, path.Concat(new[] { start })));
}
如果你想让算法不仅适用于二叉树,而且适用于有两个或两个以上节点指向同一个节点的图,你必须通过持有已经访问过的节点列表来避免自循环。实现可能是这样的。
图形数据可视化
IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
{"A", new [] {"B", "C"}},
{"B", new [] {"D", "E"}},
{"C", new [] {"F", "G", "E"}},
{"E", new [] {"H"}}
};
void Main()
{
var pathFound = BreadthFirstSearch("A", "H", new string[0], new List<string>());
Console.WriteLine(pathFound); // [A, B, E, H]
var pathNotFound = BreadthFirstSearch("A", "Z", new string[0], new List<string>());
Console.WriteLine(pathNotFound); // []
}
IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path, IList<string> visited)
{
if (start == end)
{
return path.Concat(new[] { end });
}
if (!graph.ContainsKey(start)) { return new string[0]; }
return graph[start].Aggregate(new string[0], (acc, letter) =>
{
if (visited.Contains(letter))
{
return acc;
}
visited.Add(letter);
var result = BreadthFirstSearch(letter, end, path.Concat(new[] { start }), visited);
return acc.Concat(result).ToArray();
});
}
在学习AlgoExpert时,对这个问题进行了改编。提示符中已经提供了以下Class。这里是python中的迭代和递归解决方案。这个问题的目标是返回一个输出数组,其中列出了按访问顺序排列的节点名称。如果遍历顺序为A -> B -> D -> F,则输出为['A','B','D','F']
class Node:
def __init__(self, name):
self.children = []
self.name = name
def addChild(self, name):
self.children.append(Node(name))
return self
递归
def breadthFirstSearch(self, array):
return self._bfs(array, [self])
def _bfs(self, array, visited):
# Base case - no more nodes to visit
if len(visited) == 0:
return array
node = visited.pop(0)
array.append(node.name)
visited.extend(node.children)
return self._bfs(array, visited)
迭代
def breadthFirstSearch(self, array):
array.append(self.name)
queue = [self]
while len(queue) > 0:
node = queue.pop(0)
for child in node.children:
array.append(child.name)
queue.append(child)
return array
下面使用Haskell对我来说似乎很自然。在树的各个层次上递归迭代(这里我将名字收集到一个大的有序字符串中,以显示树的路径):
data Node = Node {name :: String, children :: [Node]}
aTree = Node "r" [Node "c1" [Node "gc1" [Node "ggc1" []], Node "gc2" []] , Node "c2" [Node "gc3" []], Node "c3" [] ]
breadthFirstOrder x = levelRecurser [x]
where levelRecurser level = if length level == 0
then ""
else concat [name node ++ " " | node <- level] ++ levelRecurser (concat [children node | node <- level])
二进制(或n-ary)树的BFS可以在没有队列的情况下递归完成,如下所示(在Java中):
public class BreathFirst {
static class Node {
Node(int value) {
this(value, 0);
}
Node(int value, int nChildren) {
this.value = value;
this.children = new Node[nChildren];
}
int value;
Node[] children;
}
static void breathFirst(Node root, Consumer<? super Node> printer) {
boolean keepGoing = true;
for (int level = 0; keepGoing; level++) {
keepGoing = breathFirst(root, printer, level);
}
}
static boolean breathFirst(Node node, Consumer<? super Node> printer, int depth) {
if (depth < 0 || node == null) return false;
if (depth == 0) {
printer.accept(node);
return true;
}
boolean any = false;
for (final Node child : node.children) {
any |= breathFirst(child, printer, depth - 1);
}
return any;
}
}
按升序遍历打印数字1-12的示例:
public static void main(String... args) {
// 1
// / | \
// 2 3 4
// / | | \
// 5 6 7 8
// / | | \
// 9 10 11 12
Node root = new Node(1, 3);
root.children[0] = new Node(2, 2);
root.children[1] = new Node(3);
root.children[2] = new Node(4, 2);
root.children[0].children[0] = new Node(5, 2);
root.children[0].children[1] = new Node(6);
root.children[2].children[0] = new Node(7, 2);
root.children[2].children[1] = new Node(8);
root.children[0].children[0].children[0] = new Node(9);
root.children[0].children[0].children[1] = new Node(10);
root.children[2].children[0].children[0] = new Node(11);
root.children[2].children[0].children[1] = new Node(12);
breathFirst(root, n -> System.out.println(n.value));
}