假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?

是否可以只使用调用堆栈作为辅助存储?


当前回答

下面是一个python实现:

graph = {'A': ['B', 'C'],
         'B': ['C', 'D'],
         'C': ['D'],
         'D': ['C'],
         'E': ['F'],
         'F': ['C']}

def bfs(paths, goal):
    if not paths:
        raise StopIteration

    new_paths = []
    for path in paths:
        if path[-1] == goal:
            yield path

        last = path[-1]
        for neighbor in graph[last]:
            if neighbor not in path:
                new_paths.append(path + [neighbor])
    yield from bfs(new_paths, goal)


for path in bfs([['A']], 'D'):
    print(path)

其他回答

以下是我的完全递归实现的双向图的广度优先搜索的代码,而不使用循环和队列。

public class Graph { public int V; public LinkedList<Integer> adj[]; Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<>(); } void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); } public LinkedList<Integer> getAdjVerted(int vertex) { return adj[vertex]; } public String toString() { String s = ""; for (int i=0;i<adj.length;i++) { s = s +"\n"+i +"-->"+ adj[i] ; } return s; } } //BFS IMPLEMENTATION public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[]) { if (!visited[vertex]) { System.out.print(vertex +" "); visited[vertex] = true; } if(!isAdjPrinted[vertex]) { isAdjPrinted[vertex] = true; List<Integer> adjList = graph.getAdjVerted(vertex); printAdjecent(graph, adjList, visited, 0,isAdjPrinted); } } public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < vertexList.size()) { recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted); recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted); } } public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < list.size()) { if (!visited[list.get(i)]) { System.out.print(list.get(i)+" "); visited[list.get(i)] = true; } printAdjecent(graph, list, visited, i+1, isAdjPrinted); } else { recursiveBFS(graph, list, visited, 0, isAdjPrinted); } }

c#实现的递归宽度优先搜索二叉树算法。

二叉树数据可视化

IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
    {"A", new [] {"B", "C"}},
    {"B", new [] {"D", "E"}},
    {"C", new [] {"F", "G"}},
    {"E", new [] {"H"}}
};

void Main()
{
    var pathFound = BreadthFirstSearch("A", "H", new string[0]);
    Console.WriteLine(pathFound); // [A, B, E, H]

    var pathNotFound = BreadthFirstSearch("A", "Z", new string[0]);
    Console.WriteLine(pathNotFound); // []
}

IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path)
{
    if (start == end)
    {
        return path.Concat(new[] { end });
    }

    if (!graph.ContainsKey(start)) { return new string[0]; }    

    return graph[start].SelectMany(letter => BreadthFirstSearch(letter, end, path.Concat(new[] { start })));
}

如果你想让算法不仅适用于二叉树,而且适用于有两个或两个以上节点指向同一个节点的图,你必须通过持有已经访问过的节点列表来避免自循环。实现可能是这样的。

图形数据可视化

IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
    {"A", new [] {"B", "C"}},
    {"B", new [] {"D", "E"}},
    {"C", new [] {"F", "G", "E"}},
    {"E", new [] {"H"}}
};

void Main()
{
    var pathFound = BreadthFirstSearch("A", "H", new string[0], new List<string>());
    Console.WriteLine(pathFound); // [A, B, E, H]

    var pathNotFound = BreadthFirstSearch("A", "Z", new string[0], new List<string>());
    Console.WriteLine(pathNotFound); // []
}

IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path, IList<string> visited)
{
    if (start == end)
    {
        return path.Concat(new[] { end });
    }

    if (!graph.ContainsKey(start)) { return new string[0]; }


    return graph[start].Aggregate(new string[0], (acc, letter) =>
    {
        if (visited.Contains(letter))
        {
            return acc;
        }

        visited.Add(letter);

        var result = BreadthFirstSearch(letter, end, path.Concat(new[] { start }), visited);
        return acc.Concat(result).ToArray();
    });
}

在学习AlgoExpert时,对这个问题进行了改编。提示符中已经提供了以下Class。这里是python中的迭代和递归解决方案。这个问题的目标是返回一个输出数组,其中列出了按访问顺序排列的节点名称。如果遍历顺序为A -> B -> D -> F,则输出为['A','B','D','F']

class Node:
    def __init__(self, name):
        self.children = []
        self.name = name

    def addChild(self, name):
        self.children.append(Node(name))
        return self

递归

def breadthFirstSearch(self, array):
    return self._bfs(array, [self])
    
def _bfs(self, array, visited):

    # Base case - no more nodes to visit
    if len(visited) == 0:
        return array

    node = visited.pop(0)
    array.append(node.name)
    visited.extend(node.children)
    return self._bfs(array, visited)

迭代

def breadthFirstSearch(self, array):
    array.append(self.name)
    queue = [self]
    while len(queue) > 0:
        node = queue.pop(0)
        for child in node.children:
            array.append(child.name)
            queue.append(child)
    return array

下面使用Haskell对我来说似乎很自然。在树的各个层次上递归迭代(这里我将名字收集到一个大的有序字符串中,以显示树的路径):

data Node = Node {name :: String, children :: [Node]}
aTree = Node "r" [Node "c1" [Node "gc1" [Node "ggc1" []], Node "gc2" []] , Node "c2" [Node "gc3" []], Node "c3" [] ]
breadthFirstOrder x = levelRecurser [x]
    where levelRecurser level = if length level == 0
                                then ""
                                else concat [name node ++ " " | node <- level] ++ levelRecurser (concat [children node | node <- level])

二进制(或n-ary)树的BFS可以在没有队列的情况下递归完成,如下所示(在Java中):

public class BreathFirst {

    static class Node {
        Node(int value) {
            this(value, 0);
        }
        Node(int value, int nChildren) {
            this.value = value;
            this.children = new Node[nChildren];
        }
        int value;
        Node[] children;
    }

    static void breathFirst(Node root, Consumer<? super Node> printer) {
        boolean keepGoing = true;
        for (int level = 0; keepGoing; level++) {
            keepGoing = breathFirst(root, printer, level);
        }
    }

    static boolean breathFirst(Node node, Consumer<? super Node> printer, int depth) {
        if (depth < 0 || node == null) return false;
        if (depth == 0) {
            printer.accept(node);
            return true;
        }
        boolean any = false;
        for (final Node child : node.children) {
            any |= breathFirst(child, printer, depth - 1);
        }
        return any;
    }
}

按升序遍历打印数字1-12的示例:

public static void main(String... args) {
    //            1
    //          / | \
    //        2   3   4
    //      / |       | \
    //    5   6       7  8
    //  / |           | \
    // 9  10         11  12

    Node root = new Node(1, 3);
    root.children[0] = new Node(2, 2);
    root.children[1] = new Node(3);
    root.children[2] = new Node(4, 2);
    root.children[0].children[0] = new Node(5, 2);
    root.children[0].children[1] = new Node(6);
    root.children[2].children[0] = new Node(7, 2);
    root.children[2].children[1] = new Node(8);
    root.children[0].children[0].children[0] = new Node(9);
    root.children[0].children[0].children[1] = new Node(10);
    root.children[2].children[0].children[0] = new Node(11);
    root.children[2].children[0].children[1] = new Node(12);

    breathFirst(root, n -> System.out.println(n.value));
}