我试图初始化一个data。frame,没有任何行。基本上,我希望为每个列指定数据类型并命名它们,但结果不创建任何行。

到目前为止,我能做的最好的事情是:

df <- data.frame(Date=as.Date("01/01/2000", format="%m/%d/%Y"), 
                 File="", User="", stringsAsFactors=FALSE)
df <- df[-1,]

它创建了一个data.frame,包含我想要的所有数据类型和列名的单行,但也创建了一个无用的行,然后需要删除。

还有更好的办法吗?


当前回答

如果你已经有一个存在的数据帧,比如df,它有你想要的列,那么你可以通过删除所有的行来创建一个空的数据帧:

empty_df = df[FALSE,]

注意df仍然包含数据,但empty_df没有。

我发现这个问题是寻找如何创建一个空行的新实例,所以我认为它可能对一些人有帮助。

其他回答

我使用以下代码创建了空数据帧

df = data.frame(id = numeric(0), jobs = numeric(0));

并尝试绑定一些行来填充,如下所示。

newrow = c(3, 4)
df <- rbind(df, newrow)

但是它开始给出如下错误的列名

  X3 X4
1  3  4

解决方案是将newrow转换为df类型,如下所示

newrow = data.frame(id=3, jobs=4)
df <- rbind(df, newrow)

现在给出正确的数据帧时显示列名如下

  id nobs
1  3   4 

最有效的方法是使用structure创建一个类为"data.frame"的列表:

structure(list(Date = as.Date(character()), File = character(), User = character()), 
          class = "data.frame")
# [1] Date File User
# <0 rows> (or 0-length row.names)

为了与目前公认的答案进行比较,这里有一个简单的基准:

s <- function() structure(list(Date = as.Date(character()), 
                               File = character(), 
                               User = character()), 
                          class = "data.frame")
d <- function() data.frame(Date = as.Date(character()),
                           File = character(), 
                           User = character(), 
                           stringsAsFactors = FALSE) 
library("microbenchmark")
microbenchmark(s(), d())
# Unit: microseconds
#  expr     min       lq     mean   median      uq      max neval
#   s()  58.503  66.5860  90.7682  82.1735 101.803  469.560   100
#   d() 370.644 382.5755 523.3397 420.1025 604.654 1565.711   100

如果你在寻找短:

read.csv(text="col1,col2")

因此不需要单独指定列名。在填充数据帧之前,您将获得默认的逻辑列类型。

如果你已经有了一个dataframe,你可以从一个dataframe中提取元数据(列名和类型)(例如,如果你正在控制一个BUG,它只会被某些输入触发,并且需要一个空的dummy dataframe):

colums_and_types <- sapply(df, class)

# prints: "c('col1', 'col2')"
print(dput(as.character(names(colums_and_types))))

# prints: "c('integer', 'factor')"
dput(as.character(as.vector(colums_and_types)))

然后使用read。表创建空数据框架

read.table(text = "",
   colClasses = c('integer', 'factor'),
   col.names = c('col1', 'col2'))

这个问题并没有特别解决我的问题(在这里概述),但如果有人想用参数化的列数来做这件事,并且没有强制:

> require(dplyr)
> dbNames <- c('a','b','c','d')
> emptyTableOut <- 
    data.frame(
        character(), 
        matrix(integer(), ncol = 3, nrow = 0), stringsAsFactors = FALSE
    ) %>% 
    setNames(nm = c(dbNames))
> glimpse(emptyTableOut)
Observations: 0
Variables: 4
$ a <chr> 
$ b <int> 
$ c <int> 
$ d <int>

正如分裂论在相关问题上所说,

...[强制]发生的原因[当cbinding矩阵和它们的组成类型]是一个矩阵只能有一个 单一数据类型。当你绑定2个矩阵时,结果仍然是a 矩阵,所以变量都被压缩成一个类型 转换为data.frame