我试图初始化一个data。frame,没有任何行。基本上,我希望为每个列指定数据类型并命名它们,但结果不创建任何行。

到目前为止,我能做的最好的事情是:

df <- data.frame(Date=as.Date("01/01/2000", format="%m/%d/%Y"), 
                 File="", User="", stringsAsFactors=FALSE)
df <- df[-1,]

它创建了一个data.frame,包含我想要的所有数据类型和列名的单行,但也创建了一个无用的行,然后需要删除。

还有更好的办法吗?


当前回答

您可以在不指定列类型的情况下执行此操作

df = data.frame(matrix(vector(), 0, 3,
                dimnames=list(c(), c("Date", "File", "User"))),
                stringsAsFactors=F)

其他回答

如果你在寻找短:

read.csv(text="col1,col2")

因此不需要单独指定列名。在填充数据帧之前,您将获得默认的逻辑列类型。

只需用空向量初始化它:

df <- data.frame(Date=as.Date(character()),
                 File=character(), 
                 User=character(), 
                 stringsAsFactors=FALSE) 

下面是另一个不同列类型的例子:

df <- data.frame(Doubles=double(),
                 Ints=integer(),
                 Factors=factor(),
                 Logicals=logical(),
                 Characters=character(),
                 stringsAsFactors=FALSE)

str(df)
> str(df)
'data.frame':   0 obs. of  5 variables:
 $ Doubles   : num 
 $ Ints      : int 
 $ Factors   : Factor w/ 0 levels: 
 $ Logicals  : logi 
 $ Characters: chr 

注意:

用错误类型的空列初始化data.frame不会阻止进一步添加具有不同类型列的行。 这个方法稍微安全一点,因为从一开始你就有正确的列类型,因此如果你的代码依赖于一些列类型检查,即使data.frame没有行,它也能工作。

如果你已经有一个存在的数据帧,比如df,它有你想要的列,那么你可以通过删除所有的行来创建一个空的数据帧:

empty_df = df[FALSE,]

注意df仍然包含数据,但empty_df没有。

我发现这个问题是寻找如何创建一个空行的新实例,所以我认为它可能对一些人有帮助。

最有效的方法是使用structure创建一个类为"data.frame"的列表:

structure(list(Date = as.Date(character()), File = character(), User = character()), 
          class = "data.frame")
# [1] Date File User
# <0 rows> (or 0-length row.names)

为了与目前公认的答案进行比较,这里有一个简单的基准:

s <- function() structure(list(Date = as.Date(character()), 
                               File = character(), 
                               User = character()), 
                          class = "data.frame")
d <- function() data.frame(Date = as.Date(character()),
                           File = character(), 
                           User = character(), 
                           stringsAsFactors = FALSE) 
library("microbenchmark")
microbenchmark(s(), d())
# Unit: microseconds
#  expr     min       lq     mean   median      uq      max neval
#   s()  58.503  66.5860  90.7682  82.1735 101.803  469.560   100
#   d() 370.644 382.5755 523.3397 420.1025 604.654 1565.711   100

这个问题并没有特别解决我的问题(在这里概述),但如果有人想用参数化的列数来做这件事,并且没有强制:

> require(dplyr)
> dbNames <- c('a','b','c','d')
> emptyTableOut <- 
    data.frame(
        character(), 
        matrix(integer(), ncol = 3, nrow = 0), stringsAsFactors = FALSE
    ) %>% 
    setNames(nm = c(dbNames))
> glimpse(emptyTableOut)
Observations: 0
Variables: 4
$ a <chr> 
$ b <int> 
$ c <int> 
$ d <int>

正如分裂论在相关问题上所说,

...[强制]发生的原因[当cbinding矩阵和它们的组成类型]是一个矩阵只能有一个 单一数据类型。当你绑定2个矩阵时,结果仍然是a 矩阵,所以变量都被压缩成一个类型 转换为data.frame