我试图初始化一个data。frame,没有任何行。基本上,我希望为每个列指定数据类型并命名它们,但结果不创建任何行。

到目前为止,我能做的最好的事情是:

df <- data.frame(Date=as.Date("01/01/2000", format="%m/%d/%Y"), 
                 File="", User="", stringsAsFactors=FALSE)
df <- df[-1,]

它创建了一个data.frame,包含我想要的所有数据类型和列名的单行,但也创建了一个无用的行,然后需要删除。

还有更好的办法吗?


当前回答

只需用空向量初始化它:

df <- data.frame(Date=as.Date(character()),
                 File=character(), 
                 User=character(), 
                 stringsAsFactors=FALSE) 

下面是另一个不同列类型的例子:

df <- data.frame(Doubles=double(),
                 Ints=integer(),
                 Factors=factor(),
                 Logicals=logical(),
                 Characters=character(),
                 stringsAsFactors=FALSE)

str(df)
> str(df)
'data.frame':   0 obs. of  5 variables:
 $ Doubles   : num 
 $ Ints      : int 
 $ Factors   : Factor w/ 0 levels: 
 $ Logicals  : logi 
 $ Characters: chr 

注意:

用错误类型的空列初始化data.frame不会阻止进一步添加具有不同类型列的行。 这个方法稍微安全一点,因为从一开始你就有正确的列类型,因此如果你的代码依赖于一些列类型检查,即使data.frame没有行,它也能工作。

其他回答

只是声明

table = data.frame()

当您尝试rbind第一行时,它将创建列

最有效的方法是使用structure创建一个类为"data.frame"的列表:

structure(list(Date = as.Date(character()), File = character(), User = character()), 
          class = "data.frame")
# [1] Date File User
# <0 rows> (or 0-length row.names)

为了与目前公认的答案进行比较,这里有一个简单的基准:

s <- function() structure(list(Date = as.Date(character()), 
                               File = character(), 
                               User = character()), 
                          class = "data.frame")
d <- function() data.frame(Date = as.Date(character()),
                           File = character(), 
                           User = character(), 
                           stringsAsFactors = FALSE) 
library("microbenchmark")
microbenchmark(s(), d())
# Unit: microseconds
#  expr     min       lq     mean   median      uq      max neval
#   s()  58.503  66.5860  90.7682  82.1735 101.803  469.560   100
#   d() 370.644 382.5755 523.3397 420.1025 604.654 1565.711   100

要创建一个空数据帧,将所需的行数和列数传入以下函数:

create_empty_table <- function(num_rows, num_cols) {
    frame <- data.frame(matrix(NA, nrow = num_rows, ncol = num_cols))
    return(frame)
}

要在指定每列的类的同时创建一个空帧,只需将所需数据类型的向量传递给下面的函数:

create_empty_table <- function(num_rows, num_cols, type_vec) {
  frame <- data.frame(matrix(NA, nrow = num_rows, ncol = num_cols))
  for(i in 1:ncol(frame)) {
    print(type_vec[i])
    if(type_vec[i] == 'numeric') {frame[,i] <- as.numeric(frame[,i])}
    if(type_vec[i] == 'character') {frame[,i] <- as.character(frame[,i])}
    if(type_vec[i] == 'logical') {frame[,i] <- as.logical(frame[,i])}
    if(type_vec[i] == 'factor') {frame[,i] <- as.factor(frame[,i])}
  }
  return(frame)
}

使用方法如下:

df <- create_empty_table(3, 3, c('character','logical','numeric'))

这使:

   X1  X2 X3
1 <NA> NA NA
2 <NA> NA NA
3 <NA> NA NA

要确认您的选择,运行以下命令:

lapply(df, class)

#output
$X1
[1] "character"

$X2
[1] "logical"

$X3
[1] "numeric"

我使用以下代码创建了空数据帧

df = data.frame(id = numeric(0), jobs = numeric(0));

并尝试绑定一些行来填充,如下所示。

newrow = c(3, 4)
df <- rbind(df, newrow)

但是它开始给出如下错误的列名

  X3 X4
1  3  4

解决方案是将newrow转换为df类型,如下所示

newrow = data.frame(id=3, jobs=4)
df <- rbind(df, newrow)

现在给出正确的数据帧时显示列名如下

  id nobs
1  3   4 

这个问题并没有特别解决我的问题(在这里概述),但如果有人想用参数化的列数来做这件事,并且没有强制:

> require(dplyr)
> dbNames <- c('a','b','c','d')
> emptyTableOut <- 
    data.frame(
        character(), 
        matrix(integer(), ncol = 3, nrow = 0), stringsAsFactors = FALSE
    ) %>% 
    setNames(nm = c(dbNames))
> glimpse(emptyTableOut)
Observations: 0
Variables: 4
$ a <chr> 
$ b <int> 
$ c <int> 
$ d <int>

正如分裂论在相关问题上所说,

...[强制]发生的原因[当cbinding矩阵和它们的组成类型]是一个矩阵只能有一个 单一数据类型。当你绑定2个矩阵时,结果仍然是a 矩阵,所以变量都被压缩成一个类型 转换为data.frame