我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
当前回答
构建我对“python:如何动态地向类添加属性?”:
class data(object):
def __init__(self,*args,**argd):
self.__dict__.update(dict(*args,**argd))
def makedata(d):
d2 = {}
for n in d:
d2[n] = trydata(d[n])
return data(d2)
def trydata(o):
if isinstance(o,dict):
return makedata(o)
elif isinstance(o,list):
return [trydata(i) for i in o]
else:
return o
在要转换的字典上调用makedata,或者根据期望的输入调用trydata,它将输出一个数据对象。
注:
如果需要更多功能,可以向trydata添加elif。 显然,如果你想要x.a ={}或类似的东西,这是行不通的。 如果您想要一个只读版本,请使用原始答案中的类数据。
其他回答
你可以使用一个自定义对象钩子来利用标准库的json模块:
import json
class obj(object):
def __init__(self, dict_):
self.__dict__.update(dict_)
def dict2obj(d):
return json.loads(json.dumps(d), object_hook=obj)
使用示例:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ['hi', {'foo': 'bar'}]}
>>> o = dict2obj(d)
>>> o.a
1
>>> o.b.c
2
>>> o.d[0]
u'hi'
>>> o.d[1].foo
u'bar'
而且它不像namedtuple那样是严格只读的,也就是说,你可以改变值-而不是结构:
>>> o.b.c = 3
>>> o.b.c
3
我想上传我对这个小范例的看法。
class Struct(dict):
def __init__(self,data):
for key, value in data.items():
if isinstance(value, dict):
setattr(self, key, Struct(value))
else:
setattr(self, key, type(value).__init__(value))
dict.__init__(self,data)
它保留导入到类中的类型的属性。我唯一关心的是从解析的字典中覆盖方法。但其他方面似乎很可靠!
为dict寻找一个简单的包装器类,支持属性样式的键访问/赋值(点表示法),我对现有选项不满意,原因如下。
数据类、pydantic等都很棒,但需要对内容进行静态定义。此外,它们不能在依赖dict的代码中替换dict,因为它们不共享相同的方法,并且不支持__getitem__()语法。
因此,我开发了MetaDict。它的行为完全类似于dict,但支持点表示法和IDE自动补全(如果对象被加载到RAM中),而没有其他解决方案的缺点和潜在的名称空间冲突。所有功能和使用示例都可以在GitHub上找到(见上面的链接)。
完全披露:我是MetaDict的作者。
我在尝试其他解决方案时遇到的缺点/限制:
Addict No key autocompletion in IDE Nested key assignment cannot be turned off Newly assigned dict objects are not converted to support attribute-style key access Shadows inbuilt type Dict Prodict No key autocompletion in IDE without defining a static schema (similar to dataclass) No recursive conversion of dict objects when embedded in list or other inbuilt iterables AttrDict No key autocompletion in IDE Converts list objects to tuple behind the scenes Munch Inbuilt methods like items(), update(), etc. can be overwritten with obj.items = [1, 2, 3] No recursive conversion of dict objects when embedded in list or other inbuilt iterables EasyDict Only strings are valid keys, but dict accepts all hashable objects as keys Inbuilt methods like items(), update(), etc. can be overwritten with obj.items = [1, 2, 3] Inbuilt methods don't behave as expected: obj.pop('unknown_key', None) raises an AttributeError
注意:我在这个stackoverflow中写了一个类似的答案,这是相关的。
我不满意那些被标记和点赞的答案,所以这里有一个简单而通用的解决方案,用于将json风格的嵌套数据结构(由字典和列表组成)转换为普通对象的层次结构:
# tested in: Python 3.8
from collections import abc
from typings import Any, Iterable, Mapping, Union
class DataObject:
def __repr__(self):
return str({k: v for k, v in vars(self).items()})
def data_to_object(data: Union[Mapping[str, Any], Iterable]) -> object:
"""
Example
-------
>>> data = {
... "name": "Bob Howard",
... "positions": [{"department": "ER", "manager_id": 13}],
... }
... data_to_object(data).positions[0].manager_id
13
"""
if isinstance(data, abc.Mapping):
r = DataObject()
for k, v in data.items():
if type(v) is dict or type(v) is list:
setattr(r, k, data_to_object(v))
else:
setattr(r, k, v)
return r
elif isinstance(data, abc.Iterable):
return [data_to_object(e) for e in data]
else:
return data
# Applies to Python-3 Standard Library
class Struct(object):
def __init__(self, data):
for name, value in data.items():
setattr(self, name, self._wrap(value))
def _wrap(self, value):
if isinstance(value, (tuple, list, set, frozenset)):
return type(value)([self._wrap(v) for v in value])
else:
return Struct(value) if isinstance(value, dict) else value
# Applies to Python-2 Standard Library
class Struct(object):
def __init__(self, data):
for name, value in data.iteritems():
setattr(self, name, self._wrap(value))
def _wrap(self, value):
if isinstance(value, (tuple, list, set, frozenset)):
return type(value)([self._wrap(v) for v in value])
else:
return Struct(value) if isinstance(value, dict) else value
可以用于任何深度的任何序列/字典/值结构。