我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。

例如:

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

应该以这样的方式访问:

>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar

我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?


当前回答

我知道这里已经有很多答案了,我迟到了,但这个方法将递归和“就地”将字典转换为类对象结构……适用于3.x.x

def dictToObject(d):
    for k,v in d.items():
        if isinstance(v, dict):
            d[k] = dictToObject(v)
    return namedtuple('object', d.keys())(*d.values())

# Dictionary created from JSON file
d = {
    'primaryKey': 'id', 
    'metadata': 
        {
            'rows': 0, 
            'lastID': 0
        }, 
    'columns': 
        {
            'col2': {
                'dataType': 'string', 
                'name': 'addressLine1'
            }, 
            'col1': {
                'datatype': 'string', 
                'name': 'postcode'
            }, 
            'col3': {
                'dataType': 'string', 
                'name': 'addressLine2'
            }, 
            'col0': {
                'datatype': 'integer', 
                'name': 'id'
            }, 
            'col4': {
                'dataType': 'string', 
                'name': 'contactNumber'
            }
        }, 
        'secondaryKeys': {}
}

d1 = dictToObject(d)
d1.columns.col1 # == object(datatype='string', name='postcode')
d1.metadata.rows # == 0

其他回答

有一个 名为namedtuple的集合助手,可以为你做这些:

from collections import namedtuple

d_named = namedtuple('Struct', d.keys())(*d.values())

In [7]: d_named
Out[7]: Struct(a=1, b={'c': 2}, d=['hi', {'foo': 'bar'}])

In [8]: d_named.a
Out[8]: 1
>>> def dict2obj(d):
        if isinstance(d, list):
            d = [dict2obj(x) for x in d]
        if not isinstance(d, dict):
            return d
        class C(object):
            pass
        o = C()
        for k in d:
            o.__dict__[k] = dict2obj(d[k])
        return o


>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
'bar'

这个小类从来没有给我任何问题,只是扩展它并使用copy()方法:

  import simplejson as json

  class BlindCopy(object):

    def copy(self, json_str):
        dic = json.loads(json_str)
        for k, v in dic.iteritems():
            if hasattr(self, k):
                setattr(self, k, v);

下面是一个使用namedtuple的嵌套就绪版本:

from collections import namedtuple

class Struct(object):
    def __new__(cls, data):
        if isinstance(data, dict):
            return namedtuple(
                'Struct', data.iterkeys()
            )(
                *(Struct(val) for val in data.values())
            )
        elif isinstance(data, (tuple, list, set, frozenset)):
            return type(data)(Struct(_) for _ in data)
        else:
            return data

=>

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> s = Struct(d)
>>> s.d
['hi', Struct(foo='bar')]
>>> s.d[0]
'hi'
>>> s.d[1].foo
'bar'

我不满意那些被标记和点赞的答案,所以这里有一个简单而通用的解决方案,用于将json风格的嵌套数据结构(由字典和列表组成)转换为普通对象的层次结构:

# tested in: Python 3.8
from collections import abc
from typings import Any, Iterable, Mapping, Union

class DataObject:
    def __repr__(self):
        return str({k: v for k, v in vars(self).items()})

def data_to_object(data: Union[Mapping[str, Any], Iterable]) -> object:
    """
    Example
    -------
    >>> data = {
    ...     "name": "Bob Howard",
    ...     "positions": [{"department": "ER", "manager_id": 13}],
    ... }
    ... data_to_object(data).positions[0].manager_id
    13
    """
    if isinstance(data, abc.Mapping):
        r = DataObject()
        for k, v in data.items():
            if type(v) is dict or type(v) is list:
                setattr(r, k, data_to_object(v))
            else:
                setattr(r, k, v)
        return r
    elif isinstance(data, abc.Iterable):
        return [data_to_object(e) for e in data]
    else:
        return data