我想要一个函数为负数返回-1,为正数返回+1。 http://en.wikipedia.org/wiki/Sign_function 我自己编写它很容易,但它似乎应该存在于某个标准库中。
编辑:具体来说,我正在寻找一个函数工作在浮动。
我想要一个函数为负数返回-1,为正数返回+1。 http://en.wikipedia.org/wiki/Sign_function 我自己编写它很容易,但它似乎应该存在于某个标准库中。
编辑:具体来说,我正在寻找一个函数工作在浮动。
当前回答
下面重载的接受答案确实不会触发-Wtype-limits。但它确实会触发未使用的参数警告(针对is_signed变量)。为了避免这些,第二个参数不应该这样命名:
template <typename T> inline constexpr
int signum(T x, std::false_type) {
return T(0) < x;
}
template <typename T> inline constexpr
int signum(T x, std::true_type) {
return (T(0) < x) - (x < T(0));
}
template <typename T> inline constexpr
int signum(T x) {
return signum(x, std::is_signed<T>());
}
对于c++ 11或更高版本,可以选择。
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, int>::type
inline constexpr signum(T const x) {
return T(0) < x;
}
template <typename T>
typename std::enable_if<std::is_signed<T>::value, int>::type
inline constexpr signum(T const x) {
return (T(0) < x) - (x < T(0));
}
对我来说,它不会触发GCC 5.3.1上的任何警告。
其他回答
类型安全的c++版本:
template <typename T> int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
好处:
Actually implements signum (-1, 0, or 1). Implementations here using copysign only return -1 or 1, which is not signum. Also, some implementations here are returning a float (or T) rather than an int, which seems wasteful. Works for ints, floats, doubles, unsigned shorts, or any custom types constructible from integer 0 and orderable. Fast! copysign is slow, especially if you need to promote and then narrow again. This is branchless and optimizes excellently Standards-compliant! The bitshift hack is neat, but only works for some bit representations, and doesn't work when you have an unsigned type. It could be provided as a manual specialization when appropriate. Accurate! Simple comparisons with zero can maintain the machine's internal high-precision representation (e.g. 80 bit on x87), and avoid a premature round to zero.
警告:
It's a template so it might take longer to compile in some circumstances. Apparently some people think use of a new, somewhat esoteric, and very slow standard library function that doesn't even really implement signum is more understandable. The < 0 part of the check triggers GCC's -Wtype-limits warning when instantiated for an unsigned type. You can avoid this by using some overloads: template <typename T> inline constexpr int signum(T x, std::false_type is_signed) { return T(0) < x; } template <typename T> inline constexpr int signum(T x, std::true_type is_signed) { return (T(0) < x) - (x < T(0)); } template <typename T> inline constexpr int signum(T x) { return signum(x, std::is_signed<T>()); } (Which is a good example of the first caveat.)
我不知道它的标准函数。这里有一种有趣的写法:
(x > 0) - (x < 0)
这里有一个更容易理解的方法:
if (x > 0) return 1;
if (x < 0) return -1;
return 0;
如果你喜欢三元运算符,你可以这样做:
(x > 0) ? 1 : ((x < 0) ? -1 : 0)
有点跑题了,但我用了这个:
template<typename T>
constexpr int sgn(const T &a, const T &b) noexcept{
return (a > b) - (a < b);
}
template<typename T>
constexpr int sgn(const T &a) noexcept{
return sgn(a, T(0));
}
我发现第一个函数-有两个参数的函数,比“标准”sgn()更有用,因为它最常在这样的代码中使用:
int comp(unsigned a, unsigned b){
return sgn( int(a) - int(b) );
}
vs.
int comp(unsigned a, unsigned b){
return sgn(a, b);
}
无符号类型没有强制转换,也没有额外的减号。
这段代码是用sgn()写的
template <class T>
int comp(const T &a, const T &b){
log__("all");
if (a < b)
return -1;
if (a > b)
return +1;
return 0;
}
inline int comp(int const a, int const b){
log__("int");
return a - b;
}
inline int comp(long int const a, long int const b){
log__("long");
return sgn(a, b);
}
似乎大多数答案都忽略了最初的问题。
在C/ c++中是否存在标准符号函数(signum, sgn) ?
在标准库中没有,但是有一个copysign可以通过copysign(1.0, arg)以几乎相同的方式使用,在boost中有一个真正的符号函数,它也可能是标准的一部分。
#include <boost/math/special_functions/sign.hpp>
//Returns 1 if x > 0, -1 if x < 0, and 0 if x is zero.
template <class T>
inline int sign (const T& z);
这是一个分支友好的实现:
inline int signum(const double x) {
if(x == 0) return 0;
return (1 - (static_cast<int>((*reinterpret_cast<const uint64_t*>(&x)) >> 63) << 1));
}
除非你的数据有一半是0,否则分支预测器会选择一个最常见的分支。两个分支都只涉及简单的操作。
另外,在一些编译器和CPU架构上,完全无分支的版本可能更快:
inline int signum(const double x) {
return (x != 0) *
(1 - (static_cast<int>((*reinterpret_cast<const uint64_t*>(&x)) >> 63) << 1));
}
这适用于IEEE 754双精度二进制浮点格式:binary64。