我想要一个函数为负数返回-1,为正数返回+1。 http://en.wikipedia.org/wiki/Sign_function 我自己编写它很容易,但它似乎应该存在于某个标准库中。

编辑:具体来说,我正在寻找一个函数工作在浮动。


当前回答

如果您只想测试符号,则使用signbit(如果参数有负号则返回true)。 不知道为什么你特别想要返回-1或+1;复印件更方便 但在某些平台上,它会在负0时返回+1 仅部分支持负0,其中signbit可能会返回true。

其他回答

int sign(float n)
{     
  union { float f; std::uint32_t i; } u { n };
  return 1 - ((u.i >> 31) << 1);
}

这个函数假设:

浮点数的二进制32表示 在使用命名联合时对严格的混叠规则做出例外的编译器

比上述解决方案更快,包括评级最高的一个:

(x < 0) ? -1 : (x > 0)

这是一个分支友好的实现:

inline int signum(const double x) {
    if(x == 0) return 0;
    return (1 - (static_cast<int>((*reinterpret_cast<const uint64_t*>(&x)) >> 63) << 1));
}

除非你的数据有一半是0,否则分支预测器会选择一个最常见的分支。两个分支都只涉及简单的操作。

另外,在一些编译器和CPU架构上,完全无分支的版本可能更快:

inline int signum(const double x) {
    return (x != 0) * 
        (1 - (static_cast<int>((*reinterpret_cast<const uint64_t*>(&x)) >> 63) << 1));
}

这适用于IEEE 754双精度二进制浮点格式:binary64。

在C/ c++中是否存在标准符号函数(signum, sgn) ?

是的,这取决于定义。

C99及以后版本在<math.h>中有signbit()宏

Int符号位(实浮点x); signbit宏当且仅当其参数值的符号为负时返回一个非零值。C11§7.12.3.6


然而OP想要一些不同的东西。

我想要一个函数,返回-1的负数和+1的正数. ...处理浮点数的函数。

#define signbit_p1_or_n1(x)  ((signbit(x) ?  -1 : 1)

更深层次的问题:

OP的问题在以下情况下不是特定的:x = 0.0, -0.0, +NaN, -NaN。

经典的signum()在x>0时返回+1,在x<0时返回-1,在x==0时返回0。

许多答案已经涵盖了这一点,但没有涉及x = -0.0, +NaN, -NaN。许多都是针对通常缺少Not-a-Numbers (NaN)和-0.0的整数观点。

典型答案函数如signnum_typical()在-0.0,+NaN, -NaN上,它们返回0.0,0.0,0.0。

int signnum_typical(double x) {
  if (x > 0.0) return 1;
  if (x < 0.0) return -1;
  return 0;
}

相反,我建议这样的功能:在-0.0,+NaN, -NaN上,它返回-0.0,+NaN, -NaN。

double signnum_c(double x) {
  if (x > 0.0) return 1.0;
  if (x < 0.0) return -1.0;
  return x;
}

类型安全的c++版本:

template <typename T> int sgn(T val) {
    return (T(0) < val) - (val < T(0));
}

好处:

Actually implements signum (-1, 0, or 1). Implementations here using copysign only return -1 or 1, which is not signum. Also, some implementations here are returning a float (or T) rather than an int, which seems wasteful. Works for ints, floats, doubles, unsigned shorts, or any custom types constructible from integer 0 and orderable. Fast! copysign is slow, especially if you need to promote and then narrow again. This is branchless and optimizes excellently Standards-compliant! The bitshift hack is neat, but only works for some bit representations, and doesn't work when you have an unsigned type. It could be provided as a manual specialization when appropriate. Accurate! Simple comparisons with zero can maintain the machine's internal high-precision representation (e.g. 80 bit on x87), and avoid a premature round to zero.

警告:

It's a template so it might take longer to compile in some circumstances. Apparently some people think use of a new, somewhat esoteric, and very slow standard library function that doesn't even really implement signum is more understandable. The < 0 part of the check triggers GCC's -Wtype-limits warning when instantiated for an unsigned type. You can avoid this by using some overloads: template <typename T> inline constexpr int signum(T x, std::false_type is_signed) { return T(0) < x; } template <typename T> inline constexpr int signum(T x, std::true_type is_signed) { return (T(0) < x) - (x < T(0)); } template <typename T> inline constexpr int signum(T x) { return signum(x, std::is_signed<T>()); } (Which is a good example of the first caveat.)