下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

轴= 0表示从上到下 轴= 1表示从左到右

sums[key] = lang_sets[key].iloc[:,1:].sum(axis=0)

给定的例子是取column == key中所有数据的和。

其他回答

我对熊猫还是个新手。但这是我对熊猫轴的理解:


恒变方向


0列行向下|


1行列向右——>


所以要计算一列的均值,这一列应该是常数,但它下面的行可以改变(变化)所以它是axis=0。

类似地,要计算一行的平均值,特定的行是常数,但它可以遍历不同的列(变化),axis=1。

我认为,正确答案应该是“这很复杂”。

“轴”这个词本身在不同的人心中会产生不同的形象 假设y轴,它应该是一个垂直的图像。但是,现在考虑一条垂直线x=0。这也是一条垂直线,但是x轴上的值为0。

类似地,当我们说axis='index'(意思是axis=0)时,我们说的是索引所在的“垂直”方向吗?或者由索引值处理的一系列数据?熊猫往往意味着第一个意思,垂直方向。

熊猫本身也不是100%一致的,看看下面的例子,它们几乎有相同的共同主题:

# [1] piling dfs
pd.concat([df0, df1], axis='index') 
    # adding dfs on top of each other vertically like pilling up a column, 
    # but, we will use the word 'index'

# [2] for every column in df: operate on it
df.apply(foo, axis='index')
df.mean('A', axis='index')
a_boolean_df.all(axis='index')
    # apply an operation to a vertical slice of data, ie. a column, 
    # then apply the same operation to the next column on the right 
    # then to the right again... until the last column
    # but, we will use the word 'index'

# [3] delete a column or row of data
df.drop(axis='index', ...)
df.dropna(axis='index', ...)
    # this time, we are droping an index/row, a horizontal slice of data.
    # so OBVIOUSLY we will use the word 'index'

# [4] drop duplicate
df.drop_duplicates(subset=['mycolumn0', 'mycolumn1']...)
    # thank God we don't need to deal with the "axis" bs in this

实际上我们不需要记住轴=0轴=1代表什么。 有时,axis可以是一个元组:例如axis=(0,1)我们如何理解这样多个dim轴?

我发现如果我们理解python slice[:]是如何工作的,就会更容易。

假设我们有一个一维数组: A = [0,1,0]

a[:] # select all the elements in array a

假设我们有一个2d数组:

M = [[0, 0, 1],
     [1, 0, 0],
     [0, 2, 1],
     [2, 0, 2],
     [3, 1, 0]]
M[1,:] # M[0]=1, M[1]=* --> [1, 0, 0]
M[:,2] # M[0]=*, M[1]=2 --> [1, 0, 1, 2, 0]
M[:,:] # M[0]=*, M[1]=* --> all the elements in M are selected

当计算时:

np.sum(M, axis=0) # [sum(M[:,0]), sum(M[:,1]), sum(M[:,2])]
np.sum(M, axis=1) # [sum(M[0,:]), sum(M[1,:]), sum(M[2,:]), sum(M[3,:]), sum(M[4,:])]
np.sum(M, axis=-1) # -1 means last dim, it's the same with np.sum(M, axis=1)
np.sum(M, axis=(0,1)) # sum(M[:,:])

规则很简单,当计算时将axis中指定的暗值替换为:。

数组被设计为坐标轴=0,行被垂直放置,而坐标轴=1,列被水平放置。Axis指的是数组的尺寸。

正确使用axis=的问题在于它在两种主要不同情况下的使用:

用于计算累积值或重新排列(如排序)数据。 用于操纵(“玩”)实体(例如数据帧)。

这个答案背后的主要思想是为了避免混淆,我们选择一个数字或一个名称来指定特定的轴,以更清楚、直观和描述性的为准。

Pandas基于NumPy, NumPy基于数学,特别是n维矩阵。下面是三维空间中数学中常用的轴的名称:

这张图仅用于记忆坐标轴的序数:

x轴为0, y轴为1,和 z轴为2。

z轴仅用于面板;对于数据框架,我们将把我们的兴趣限制在带有x轴(0,垂直)和y轴(1,水平)的绿色二维基本平面上。

这都是关于axis= parameter的潜在值的数字。

轴的名称是“索引”(你可以使用别名“行”)和“列”,为了解释这些名称和(轴的)序数之间的关系并不重要,因为每个人都知道“行”和“列”是什么意思(这里的每个人-我想-都知道“索引”在pandas中的意思)。

现在,我的建议是

If you want to compute an accumulated value, you may compute it from values located along axis 0 (or along axis 1) — use axis=0 (or axis=1). Similarly, if you want to rearrange values, use the axis number of the axis, along which are located data for rearranging (e.g. for sorting). If you want to manipulate (e.g. concatenate) entities (e.g. dataframes) — use axis='index' (synonym: axis='rows') or axis='columns' to specify the resulting change — index (rows) or columns, respectively. (For concatenating, you will obtain either a longer index (= more rows), or more columns, respectively.)