下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

轴= 0表示从上到下 轴= 1表示从左到右

sums[key] = lang_sets[key].iloc[:,1:].sum(axis=0)

给定的例子是取column == key中所有数据的和。

其他回答

数组被设计为坐标轴=0,行被垂直放置,而坐标轴=1,列被水平放置。Axis指的是数组的尺寸。

axis=1,它将给出行和,keepdims=True将保持2D维度。 希望对你有所帮助。

我以前也很困惑,但我记得是这样的。

它指定将更改的数据帧的维度,或者将在其上执行操作。

让我们通过一个例子来理解这一点。 我们有一个数据框架df,它的形状是(5,10),这意味着它有5行10列。

现在,当我们使用df。mean(axis=1)时,它意味着维数1将被改变,这意味着它将有相同的行数,但不同的列数。因此得到的结果将是(5,1)的形状。

类似地,如果我们使用df.mean(axis=0),这意味着维度0将被改变,这意味着行数将被改变,但列数将保持不变,因此结果将是形状(1,10)。

试着把这个和问题中提供的例子联系起来。

轴= 0表示从上到下 轴= 1表示从左到右

sums[key] = lang_sets[key].iloc[:,1:].sum(axis=0)

给定的例子是取column == key中所有数据的和。

我认为还有另一种理解方式。

对于np。数组,如果我们想要消除列,我们使用axis = 1;如果我们想消除行,我们使用axis = 0。

np.mean(np.array(np.ones(shape=(3,5,10))),axis = 0).shape # (5,10)
np.mean(np.array(np.ones(shape=(3,5,10))),axis = 1).shape # (3,10)
np.mean(np.array(np.ones(shape=(3,5,10))),axis = (0,1)).shape # (10,)

对于pandas对象,axis = 0表示按行操作,axis = 1表示按列操作。这与numpy的定义不同,我们可以检查numpy.doc和pandas.doc的定义