下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

让我们看看Wiki上的表格。这是国际货币基金组织对2010年至2019年前十大国家GDP的估计。

1. 如果你想计算每个国家过去十年(2010-2019)的平均GDP,你需要做,df.mean(轴=1)。例如,如果你想计算美国从2010年到2019年的平均GDP, df。loc['美国',' 2010 ':' 2019 '].mean(轴= 1)

2. 如果我想计算所有国家每年的平均GDP(平均值),你需要做,df.mean(轴=0)。例如,如果你想计算2015年美国、中国、日本、德国和印度的平均GDP, df。loc(“美国”:“印度”,' 2015 '].mean(轴= 0) 注意:上述代码只有在使用set_index方法将“国家(或附属领土)”列设置为索引后才能工作。

其他回答

我认为还有另一种理解方式。

对于np。数组,如果我们想要消除列,我们使用axis = 1;如果我们想消除行,我们使用axis = 0。

np.mean(np.array(np.ones(shape=(3,5,10))),axis = 0).shape # (5,10)
np.mean(np.array(np.ones(shape=(3,5,10))),axis = 1).shape # (3,10)
np.mean(np.array(np.ones(shape=(3,5,10))),axis = (0,1)).shape # (10,)

对于pandas对象,axis = 0表示按行操作,axis = 1表示按列操作。这与numpy的定义不同,我们可以检查numpy.doc和pandas.doc的定义

我将明确避免使用“行-wise”或“沿列”,因为人们可能会以完全错误的方式解释它们。

类比。直观地,你会期望pandas. datafframe .drop(axis='column')从N个列中删除一个列,并给出(N - 1)个列。所以你现在可以不关注rows(并从你的英语字典中删除row这个单词)。反之亦然,drop(axis='row')作用于行。

以同样的方式,sum(axis='column')在多个列上工作,并给出1列。类似地,sum(axis='row')的结果为1行。这与其最简单的定义形式是一致的,即将一组数字简化为一个数字。

一般来说,使用axis=column,您可以看到列,处理列,并获得列。忘记行。

使用axis=row,改变视角并在行上工作。

0和1只是“行”和“列”的别名。这是矩阵下标的惯例。

熊猫的设计师韦斯•麦金尼(Wes McKinney)曾大量从事金融数据方面的工作。将列视为股票名称,将指数视为每日价格。然后,您可以猜测关于此财务数据的默认行为是什么(即,axis=0)。Axis =1可以简单地认为是“另一个方向”。

例如,诸如mean()、sum()、describe()、count()等统计函数都默认按列执行,因为对每只股票执行这些函数更有意义。Sort_index (by=)也默认为column。Fillna (method='ffill')将沿着列填充,因为它是相同的股票。Dropna()默认为row,因为您可能只是想丢弃当天的价格,而不是丢弃该股票的所有价格。

类似地,方括号索引指的是列,因为更常见的是选择股票而不是选择日期。

记住轴1(列)与轴0(行)的简单方法之一是您期望的输出。

如果你希望每行都有输出,使用axis='columns', 另一方面,如果你想为每一列输出,你可以使用axis='rows'。

Axis指的是数组的维度,在pd的情况下。DataFrames轴=0是指向下方的维度,轴=1是指向右侧的维度。

示例:考虑一个形状为(3,5,7)的ndarray。

a = np.ones((3,5,7))

A是一个三维ndarray,即它有3个轴(“axis”是“axis”的复数)。a的构型看起来就像3片面包每片的尺寸都是5乘7。A[0,:,:]表示第0个切片,A[1,:,:]表示第1个切片,等等。

a.s sum(axis=0)将沿着a的第0个轴应用sum()。你将添加所有的切片,最终得到一个形状(5,7)的切片。

a.s sum(axis=0)等价于

b = np.zeros((5,7))
for i in range(5):
    for j in range(7):
        b[i,j] += a[:,i,j].sum()

B和a.sum(轴=0)看起来都是这样的

array([[ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.]])

在警局里。DataFrame,轴的工作方式与numpy相同。数组:axis=0将对每一列应用sum()或任何其他约简函数。

注意:在@zhangxaochen的回答中,我发现“沿着行”和“沿着列”这两个短语有点让人困惑。Axis =0表示“沿每列”,Axis =1表示“沿每行”。