下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

我以前也很困惑,但我记得是这样的。

它指定将更改的数据帧的维度,或者将在其上执行操作。

让我们通过一个例子来理解这一点。 我们有一个数据框架df,它的形状是(5,10),这意味着它有5行10列。

现在,当我们使用df。mean(axis=1)时,它意味着维数1将被改变,这意味着它将有相同的行数,但不同的列数。因此得到的结果将是(5,1)的形状。

类似地,如果我们使用df.mean(axis=0),这意味着维度0将被改变,这意味着行数将被改变,但列数将保持不变,因此结果将是形状(1,10)。

试着把这个和问题中提供的例子联系起来。

其他回答

The easiest way for me to understand is to talk about whether you are calculating a statistic for each column (axis = 0) or each row (axis = 1). If you calculate a statistic, say a mean, with axis = 0 you will get that statistic for each column. So if each observation is a row and each variable is in a column, you would get the mean of each variable. If you set axis = 1 then you will calculate your statistic for each row. In our example, you would get the mean for each observation across all of your variables (perhaps you want the average of related measures).

轴= 0:按列=按列=沿行

轴= 1:按行=按行=沿列

Axis指的是数组的维度,在pd的情况下。DataFrames轴=0是指向下方的维度,轴=1是指向右侧的维度。

示例:考虑一个形状为(3,5,7)的ndarray。

a = np.ones((3,5,7))

A是一个三维ndarray,即它有3个轴(“axis”是“axis”的复数)。a的构型看起来就像3片面包每片的尺寸都是5乘7。A[0,:,:]表示第0个切片,A[1,:,:]表示第1个切片,等等。

a.s sum(axis=0)将沿着a的第0个轴应用sum()。你将添加所有的切片,最终得到一个形状(5,7)的切片。

a.s sum(axis=0)等价于

b = np.zeros((5,7))
for i in range(5):
    for j in range(7):
        b[i,j] += a[:,i,j].sum()

B和a.sum(轴=0)看起来都是这样的

array([[ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.,  3.]])

在警局里。DataFrame,轴的工作方式与numpy相同。数组:axis=0将对每一列应用sum()或任何其他约简函数。

注意:在@zhangxaochen的回答中,我发现“沿着行”和“沿着列”这两个短语有点让人困惑。Axis =0表示“沿每列”,Axis =1表示“沿每行”。

数组被设计为坐标轴=0,行被垂直放置,而坐标轴=1,列被水平放置。Axis指的是数组的尺寸。

熊猫的设计师韦斯•麦金尼(Wes McKinney)曾大量从事金融数据方面的工作。将列视为股票名称,将指数视为每日价格。然后,您可以猜测关于此财务数据的默认行为是什么(即,axis=0)。Axis =1可以简单地认为是“另一个方向”。

例如,诸如mean()、sum()、describe()、count()等统计函数都默认按列执行,因为对每只股票执行这些函数更有意义。Sort_index (by=)也默认为column。Fillna (method='ffill')将沿着列填充,因为它是相同的股票。Dropna()默认为row,因为您可能只是想丢弃当天的价格,而不是丢弃该股票的所有价格。

类似地,方括号索引指的是列,因为更常见的是选择股票而不是选择日期。

让我们想象一下(你会永远记住),

熊猫:

轴=0表示沿着“索引”。这是一个行运算。

假设,要对dataframe1和dataframe2执行concat()操作, 我们将从dataframe1中取出第一行并放入新的DF中,然后我们从dataframe1中取出另一行并放入新的DF中,我们重复这个过程,直到我们到达dataframe1的底部。然后,我们对dataframe2执行相同的过程。

基本上,将dataframe2堆叠在dataframe1之上,反之亦然。

在桌子或地板上堆一堆书

轴=1表示沿着“列”。这是一个按列的运算。

假设,要对dataframe1和dataframe2执行concat()操作, 我们将取出第一个完整的列(a.k.)。第一个系列)的dataframe1,并放置到新的DF,然后我们拿出dataframe1的第二列,并保持相邻的(侧),我们必须重复这个操作,直到所有列完成。然后,我们在dataframe2上重复相同的过程。 基本上, 横向堆叠dataframe2。

把书摆放在书架上。

更重要的是,与矩阵相比,数组更好地表示嵌套的n维结构!所以下面可以帮助你更直观地看到轴是如何在一维以上的情况下发挥重要作用的。此外,你实际上可以打印/写入/绘制/可视化任何n-dim数组,但在矩阵表示(3-dim)中书写或可视化相同的内容在超过3维的纸张上是不可能的。