下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

这是基于@Safak的回答。 理解pandas/numpy中的轴的最好方法是创建一个3d数组,并沿着3个不同的轴检查求和函数的结果。

 a = np.ones((3,5,7))

A将是:

    array([[[1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.]],

   [[1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.]],

   [[1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1., 1., 1.]]])

现在检查数组中每个轴上元素的和:

 x0 = np.sum(a,axis=0)
 x1 = np.sum(a,axis=1)
 x2 = np.sum(a,axis=2)

会给你以下结果:

   x0 :
   array([[3., 3., 3., 3., 3., 3., 3.],
        [3., 3., 3., 3., 3., 3., 3.],
        [3., 3., 3., 3., 3., 3., 3.],
        [3., 3., 3., 3., 3., 3., 3.],
        [3., 3., 3., 3., 3., 3., 3.]])

   x1 : 
   array([[5., 5., 5., 5., 5., 5., 5.],
   [5., 5., 5., 5., 5., 5., 5.],
   [5., 5., 5., 5., 5., 5., 5.]])

  x2 :
   array([[7., 7., 7., 7., 7.],
        [7., 7., 7., 7., 7.],
        [7., 7., 7., 7., 7.]])

其他回答

让我们想象一下(你会永远记住),

熊猫:

轴=0表示沿着“索引”。这是一个行运算。

假设,要对dataframe1和dataframe2执行concat()操作, 我们将从dataframe1中取出第一行并放入新的DF中,然后我们从dataframe1中取出另一行并放入新的DF中,我们重复这个过程,直到我们到达dataframe1的底部。然后,我们对dataframe2执行相同的过程。

基本上,将dataframe2堆叠在dataframe1之上,反之亦然。

在桌子或地板上堆一堆书

轴=1表示沿着“列”。这是一个按列的运算。

假设,要对dataframe1和dataframe2执行concat()操作, 我们将取出第一个完整的列(a.k.)。第一个系列)的dataframe1,并放置到新的DF,然后我们拿出dataframe1的第二列,并保持相邻的(侧),我们必须重复这个操作,直到所有列完成。然后,我们在dataframe2上重复相同的过程。 基本上, 横向堆叠dataframe2。

把书摆放在书架上。

更重要的是,与矩阵相比,数组更好地表示嵌套的n维结构!所以下面可以帮助你更直观地看到轴是如何在一维以上的情况下发挥重要作用的。此外,你实际上可以打印/写入/绘制/可视化任何n-dim数组,但在矩阵表示(3-dim)中书写或可视化相同的内容在超过3维的纸张上是不可能的。

The easiest way for me to understand is to talk about whether you are calculating a statistic for each column (axis = 0) or each row (axis = 1). If you calculate a statistic, say a mean, with axis = 0 you will get that statistic for each column. So if each observation is a row and each variable is in a column, you would get the mean of each variable. If you set axis = 1 then you will calculate your statistic for each row. In our example, you would get the mean for each observation across all of your variables (perhaps you want the average of related measures).

轴= 0:按列=按列=沿行

轴= 1:按行=按行=沿列

轴= 0表示从上到下 轴= 1表示从左到右

sums[key] = lang_sets[key].iloc[:,1:].sum(axis=0)

给定的例子是取column == key中所有数据的和。

axis=1,它将给出行和,keepdims=True将保持2D维度。 希望对你有所帮助。

这里的许多答案对我帮助很大!

如果你对Python中的axis和R中的MARGIN的不同行为感到困惑(比如在apply函数中),你可以找到我写的一篇感兴趣的博客文章:https://accio.github.io/programming/2020/05/19/numpy-pandas-axis.html。

从本质上讲:

Their behaviours are, intriguingly, easier to understand with three-dimensional array than with two-dimensional arrays. In Python packages numpy and pandas, the axis parameter in sum actually specifies numpy to calculate the mean of all values that can be fetched in the form of array[0, 0, ..., i, ..., 0] where i iterates through all possible values. The process is repeated with the position of i fixed and the indices of other dimensions vary one after the other (from the most far-right element). The result is a n-1-dimensional array. In R, the MARGINS parameter let the apply function calculate the mean of all values that can be fetched in the form of array[, ... , i, ... ,] where i iterates through all possible values. The process is not repeated when all i values have been iterated. Therefore, the result is a simple vector.