下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

The easiest way for me to understand is to talk about whether you are calculating a statistic for each column (axis = 0) or each row (axis = 1). If you calculate a statistic, say a mean, with axis = 0 you will get that statistic for each column. So if each observation is a row and each variable is in a column, you would get the mean of each variable. If you set axis = 1 then you will calculate your statistic for each row. In our example, you would get the mean for each observation across all of your variables (perhaps you want the average of related measures).

轴= 0:按列=按列=沿行

轴= 1:按行=按行=沿列

其他回答

axis=1,它将给出行和,keepdims=True将保持2D维度。 希望对你有所帮助。

让我们想象一下(你会永远记住),

熊猫:

轴=0表示沿着“索引”。这是一个行运算。

假设,要对dataframe1和dataframe2执行concat()操作, 我们将从dataframe1中取出第一行并放入新的DF中,然后我们从dataframe1中取出另一行并放入新的DF中,我们重复这个过程,直到我们到达dataframe1的底部。然后,我们对dataframe2执行相同的过程。

基本上,将dataframe2堆叠在dataframe1之上,反之亦然。

在桌子或地板上堆一堆书

轴=1表示沿着“列”。这是一个按列的运算。

假设,要对dataframe1和dataframe2执行concat()操作, 我们将取出第一个完整的列(a.k.)。第一个系列)的dataframe1,并放置到新的DF,然后我们拿出dataframe1的第二列,并保持相邻的(侧),我们必须重复这个操作,直到所有列完成。然后,我们在dataframe2上重复相同的过程。 基本上, 横向堆叠dataframe2。

把书摆放在书架上。

更重要的是,与矩阵相比,数组更好地表示嵌套的n维结构!所以下面可以帮助你更直观地看到轴是如何在一维以上的情况下发挥重要作用的。此外,你实际上可以打印/写入/绘制/可视化任何n-dim数组,但在矩阵表示(3-dim)中书写或可视化相同的内容在超过3维的纸张上是不可能的。

我是这样理解的:

比如说,如果你的操作需要在数据框架中从左到右/从右到左,你显然是在合并列。你在不同的列上操作。 这是轴=1

例子

df = pd.DataFrame(np.arange(12).reshape(3,4),columns=['A', 'B', 'C', 'D'])
print(df)
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11 

df.mean(axis=1)

0    1.5
1    5.5
2    9.5
dtype: float64

df.drop(['A','B'],axis=1,inplace=True)

    C   D
0   2   3
1   6   7
2  10  11

这里需要注意的是,我们是在列上操作

类似地,如果您的操作需要在数据帧中从上到下/从下到上遍历,那么您正在合并行。轴为0。

它指定了计算平均值的轴。默认情况下axis=0。这与numpy一致。显式指定axis时的平均使用量(在numpy中)。mean, axis==None,默认情况下,它计算扁平数组上的平均值),其中,沿行轴=0(即,以pandas为单位的索引),沿列轴=1。为了增加清晰度,可以选择指定axis='index'(而不是axis=0)或axis='columns'(而不是axis=1)。

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|----axis=1----->
+------------+---------+--------+
             |         |
             | axis=0  |
             ↓         ↓

记住轴1(列)与轴0(行)的简单方法之一是您期望的输出。

如果你希望每行都有输出,使用axis='columns', 另一方面,如果你想为每一列输出,你可以使用axis='rows'。