一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。
我的解决方案如下:
boolean atLeastTwo(boolean a, boolean b, boolean c) {
if ((a && b) || (b && c) || (a && c)) {
return true;
}
else{
return false;
}
}
他说这还可以进一步改进,但如何改进呢?
If the goal is to return a bitwise two-out-of-three value for three operands, arithmetic and iterative approaches are apt to be relatively ineffective. On many CPU architectures, a good form would be "return ((a | b) & c) | (a & b);". That takes four boolean operations. On single-accumulator machines (common in small embedded systems) that's apt to take a total of seven instructions per byte. The form "return (a & b) | (a & c) | (b & c);" is perhaps nicer looking, but it would require five boolean operations, or nine instructions per byte on a single-accumulator machine.
顺便提一下,在CMOS逻辑中,计算“不是三选二”需要12个晶体管(相比之下,逆变器需要2个晶体管,双输入NAND或NOR需要4个晶体管,而三输入NAND或NOR需要6个晶体管)。
这真的取决于你对“改进”的定义:
清晰吗?
boolean twoOrMoreAreTrue(boolean a, boolean b, boolean c)
{
return (a && b) || (a && c) || (b && c);
}
反之亦然?
boolean moreThanTwo(boolean a, boolean b, boolean c)
{
return a == b ? a : c;
}
更一般的?
boolean moreThanXTrue(int x, boolean[] bs)
{
int count = 0;
for(boolean b : bs)
{
count += b ? 1 : 0;
if(count > x) return true;
}
return false;
}
更多的可伸缩的吗?
boolean moreThanXTrue(int x, boolean[] bs)
{
int count = 0;
for(int i < 0; i < bs.length; i++)
{
count += bs[i] ? 1 : 0;
if(count > x) return true;
int needed = x - count;
int remaining = bs.length - i;
if(needed >= remaining) return false;
}
return false;
}
更快呢?
// Only profiling can answer this.
哪一种是“改进”的,很大程度上取决于具体情况。