一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

当我看到这个问题时,我的第一个想法是:

int count=0;
if (a)
    ++count;
if (b)
    ++count;
if (c)
    ++count;
return count>=2;

在看了其他帖子后,我承认

return (a?1:0)+(b?1:0)+(c?1:0)>=2;

更优雅。我想知道相对运行时是什么。

不过,无论如何,我认为这种解决办法比那种解决办法要好得多

return a&b | b&c | a&c;

variety because is is more easily extensible. What if later we add a fourth variable that must be tested? What if the number of variables is determined at runtime, and we are passed an array of booleans of unknown size? A solution that depends on counting is much easier to extend than a solution that depends on listing every possible combination. Also, when listing all possible combinations, I suspect that it is much easier to make a mistake. Like try writing the code for "any 3 of 4" and make sure you neither miss any nor duplicate any. Now try it with "any 5 of 7".

其他回答

在c#中,我首先想到的是:

public bool lol(int minTrue, params bool[] bools)
{
    return bools.Count( ( b ) => b ) >= minTrue;
}

应该很快。

调用应该是这样的:

lol( 2, true, true, false );

这样,您就将规则(两个必须为真)留给调用者,而不是将它们嵌入到方法中。

为什么不逐字执行呢?:)

(a?1:0)+(b?1:0)+(c?1:0) >= 2

在C语言中,你可以写a+b+ C >= 2(或者!!a+!! !b+!! !C >= 2,非常安全)。

为了回应TofuBeer对java字节码的比较,这里有一个简单的性能测试:

class Main
{
    static boolean majorityDEAD(boolean a,boolean b,boolean c)
    {
        return a;
    }

    static boolean majority1(boolean a,boolean b,boolean c)
    {
        return a&&b || b&&c || a&&c;
    }

    static boolean majority2(boolean a,boolean b,boolean c)
    {
        return a ? b||c : b&&c;
    }

    static boolean majority3(boolean a,boolean b,boolean c)
    {
        return a&b | b&c | c&a;
    }

    static boolean majority4(boolean a,boolean b,boolean c)
    {
        return (a?1:0)+(b?1:0)+(c?1:0) >= 2;
    }

    static int loop1(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority1(data[i], data[j], data[k])?1:0; 
                sum += majority1(data[i], data[k], data[j])?1:0; 
                sum += majority1(data[j], data[k], data[i])?1:0; 
                sum += majority1(data[j], data[i], data[k])?1:0; 
                sum += majority1(data[k], data[i], data[j])?1:0; 
                sum += majority1(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop2(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority2(data[i], data[j], data[k])?1:0; 
                sum += majority2(data[i], data[k], data[j])?1:0; 
                sum += majority2(data[j], data[k], data[i])?1:0; 
                sum += majority2(data[j], data[i], data[k])?1:0; 
                sum += majority2(data[k], data[i], data[j])?1:0; 
                sum += majority2(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop3(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority3(data[i], data[j], data[k])?1:0; 
                sum += majority3(data[i], data[k], data[j])?1:0; 
                sum += majority3(data[j], data[k], data[i])?1:0; 
                sum += majority3(data[j], data[i], data[k])?1:0; 
                sum += majority3(data[k], data[i], data[j])?1:0; 
                sum += majority3(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop4(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority4(data[i], data[j], data[k])?1:0; 
                sum += majority4(data[i], data[k], data[j])?1:0; 
                sum += majority4(data[j], data[k], data[i])?1:0; 
                sum += majority4(data[j], data[i], data[k])?1:0; 
                sum += majority4(data[k], data[i], data[j])?1:0; 
                sum += majority4(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loopDEAD(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majorityDEAD(data[i], data[j], data[k])?1:0; 
                sum += majorityDEAD(data[i], data[k], data[j])?1:0; 
                sum += majorityDEAD(data[j], data[k], data[i])?1:0; 
                sum += majorityDEAD(data[j], data[i], data[k])?1:0; 
                sum += majorityDEAD(data[k], data[i], data[j])?1:0; 
                sum += majorityDEAD(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static void work()
    {
        boolean [] data = new boolean [10000];
        java.util.Random r = new java.util.Random(0);
        for(int i=0;i<data.length;i++)
            data[i] = r.nextInt(2) > 0;
        long t0,t1,t2,t3,t4,tDEAD;
        int sz1 = 100;
        int sz2 = 100;
        int sum = 0;

        t0 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop1(data, i, sz1, sz2);

        t1 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop2(data, i, sz1, sz2);

        t2 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop3(data, i, sz1, sz2);

        t3 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop4(data, i, sz1, sz2);

        t4 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loopDEAD(data, i, sz1, sz2);

        tDEAD = System.currentTimeMillis();

        System.out.println("a&&b || b&&c || a&&c : " + (t1-t0) + " ms");
        System.out.println("   a ? b||c : b&&c   : " + (t2-t1) + " ms");
        System.out.println("   a&b | b&c | c&a   : " + (t3-t2) + " ms");
        System.out.println("   a + b + c >= 2    : " + (t4-t3) + " ms");
        System.out.println("       DEAD          : " + (tDEAD-t4) + " ms");
        System.out.println("sum: "+sum);
    }

    public static void main(String[] args) throws InterruptedException
    {
        while(true)
        {
            work();
            Thread.sleep(1000);
        }
    }
}

这将在我的机器上打印以下内容(在Intel Core 2 + sun java 1.6.0_15-b03上运行Ubuntu,带有HotSpot Server VM (14.1-b02,混合模式):

第一次和第二次迭代:

a&&b || b&&c || a&&c : 1740 ms
   a ? b||c : b&&c   : 1690 ms
   a&b | b&c | c&a   : 835 ms
   a + b + c >= 2    : 348 ms
       DEAD          : 169 ms
sum: 1472612418

后来迭代:

a&&b || b&&c || a&&c : 1638 ms
   a ? b||c : b&&c   : 1612 ms
   a&b | b&c | c&a   : 779 ms
   a + b + c >= 2    : 905 ms
       DEAD          : 221 ms

我想知道,对于(a + b + c >= 2)情况,java虚拟机可以做什么来降低性能。

下面是如果我用-client VM开关运行java会发生什么:

a&&b || b&&c || a&&c : 4034 ms
   a ? b||c : b&&c   : 2215 ms
   a&b | b&c | c&a   : 1347 ms
   a + b + c >= 2    : 6589 ms
       DEAD          : 1016 ms

神秘……

如果我在GNU Java解释器中运行它,它会变慢近100倍,但是a&&b || b&&c || a&&c版本胜出。

在运行OS X的最新代码中,豆腐啤酒的结果:

a&&b || b&&c || a&&c : 1358 ms
   a ? b||c : b&&c   : 1187 ms
   a&b | b&c | c&a   : 410 ms
   a + b + c >= 2    : 602 ms
       DEAD          : 161 ms

Paul Wagland使用Mac Java 1.6.0_26-b03-383-11A511的结果

a&&b || b&&c || a&&c : 394 ms 
   a ? b||c : b&&c   : 435 ms
   a&b | b&c | c&a   : 420 ms
   a + b + c >= 2    : 640 ms
   a ^ b ? c : a     : 571 ms
   a != b ? c : a    : 487 ms
       DEAD          : 170 ms
boolean atLeastTwo(boolean a, boolean b, boolean c) 
{
  return ((a && b) || (b && c) || (a && c));
}

还有一种不太好的方法:

return (Boolean.valueOf(a).hashCode() + Boolean.valueOf(b).hashCode() + Boolean.valueOf(c).hashCode()) < 3705);

布尔哈希码值固定为true为1231,false为1237,因此同样可以使用<= 3699

函数ko返回答案:

static int ho(bool a)
{
    return a ? 1 : 0;
}

static bool ko(bool a, bool b, bool c)
{
    return ho(a) + ho(b) + ho(c) >= 2 ? true : false;
}