一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

设三个布尔值为A,B和C....

你可以使用一个k-MAP和一个布尔表达式…

在这种情况下,布尔表达式将是A(B+C) +C

或者if(A && (B || C) || C) { 返回true; } 其他的 返回错误;

其他回答

当我看到这个问题时,我的第一个想法是:

int count=0;
if (a)
    ++count;
if (b)
    ++count;
if (c)
    ++count;
return count>=2;

在看了其他帖子后,我承认

return (a?1:0)+(b?1:0)+(c?1:0)>=2;

更优雅。我想知道相对运行时是什么。

不过,无论如何,我认为这种解决办法比那种解决办法要好得多

return a&b | b&c | a&c;

variety because is is more easily extensible. What if later we add a fourth variable that must be tested? What if the number of variables is determined at runtime, and we are passed an array of booleans of unknown size? A solution that depends on counting is much easier to extend than a solution that depends on listing every possible combination. Also, when listing all possible combinations, I suspect that it is much easier to make a mistake. Like try writing the code for "any 3 of 4" and make sure you neither miss any nor duplicate any. Now try it with "any 5 of 7".

当然,这个问题更多的是关于你如何解决问题/思考,而不是你实际的编码能力。

一个稍微简洁一点的版本可能是

返回((a ^ b) && (b ^ c)) ^ b

但就像之前的一个帖子说的,如果我在任何我正在编写的代码中看到这个,有人会听到很多。:)

您不需要使用运算符的短路形式。

返回(a & b) | (b & c) | (c & a);

它执行与您的版本相同数量的逻辑操作,但是完全没有分支。

我的第一个想法是

return (a||b)&&(b||c)

但为了便于阅读,我喜欢你们提出的a+b+c>=2的解决方案

设三个布尔值为A,B和C....

你可以使用一个k-MAP和一个布尔表达式…

在这种情况下,布尔表达式将是A(B+C) +C

或者if(A && (B || C) || C) { 返回true; } 其他的 返回错误;