如何以最有效的内存和时间方式获取大文件的行数?

def file_len(filename):
    with open(filename) as f:
        for i, _ in enumerate(f):
            pass
    return i + 1

当前回答

大文件的另一种选择是使用xreadlines():

count = 0
for line in open(thefilepath).xreadlines(  ): count += 1

对于Python 3,请参阅:在Python 3中什么替代xreadlines() ?

其他回答

这是我用的,看起来很干净:

import subprocess

def count_file_lines(file_path):
    """
    Counts the number of lines in a file using wc utility.
    :param file_path: path to file
    :return: int, no of lines
    """
    num = subprocess.check_output(['wc', '-l', file_path])
    num = num.split(' ')
    return int(num[0])

更新:这比使用纯python略快,但以内存使用为代价。子进程在执行您的命令时将派生一个与父进程具有相同内存占用的新进程。

类似的:

lines = 0
with open(path) as f:
    for line in f:
        lines += 1

下面这句话怎么样:

file_length = len(open('myfile.txt','r').read().split('\n'))

用这种方法在一个3900行的文件上计时只需要0.003秒

def c():
  import time
  s = time.time()
  file_length = len(open('myfile.txt','r').read().split('\n'))
  print time.time() - s

凯尔的回答

num_lines = sum(1 for line in open('my_file.txt'))

最好的替代方案是什么

num_lines =  len(open('my_file.txt').read().splitlines())

这里是两者的性能比较

In [20]: timeit sum(1 for line in open('Charts.ipynb'))
100000 loops, best of 3: 9.79 µs per loop

In [21]: timeit len(open('Charts.ipynb').read().splitlines())
100000 loops, best of 3: 12 µs per loop

这段代码更短、更清晰。这可能是最好的方法:

num_lines = open('yourfile.ext').read().count('\n')