我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
我需要一个Godot (GDscript)的实现,所以我写了一个基于grumdrig接受的答案:
func minimum_distance(v: Vector2, w: Vector2, p: Vector2):
# Return minimum distance between line segment vw and point p
var l2: float = (v - w).length_squared() # i.e. |w-v|^2 - avoid a sqrt
if l2 == 0.0:
return p.distance_to(v) # v == w case
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
# We clamp t from [0,1] to handle points outside the segment vw.
var t: float = max(0, min(1, (p - v).dot(w - v) / l2))
var projection: Vector2 = v + t * (w - v) # Projection falls on the segment
return p.distance_to(projection)
其他回答
请参见以下网站中的Matlab几何工具箱: http://people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html
按Ctrl +f,输入“segment”,查找线段相关函数。函数“segment_point_dist_2d.”和segment_point_dist_3d。M "是你需要的。
几何代码有C版本、c++版本、FORTRAN77版本、FORTRAN90版本和MATLAB版本。
和这个答案一样,只是用的是Visual Basic。使其可作为Microsoft Excel和VBA/宏中的用户定义函数使用。
函数返回点(x,y)到由(x1,y1)和(x2,y2)定义的线段的最近距离。
Function DistanceToSegment(x As Double, y As Double, x1 As Double, y1 As Double, x2 As Double, y2 As Double)
Dim A As Double
A = x - x1
Dim B As Double
B = y - y1
Dim C As Double
C = x2 - x1
Dim D As Double
D = y2 - y1
Dim dot As Double
dot = A * C + B * D
Dim len_sq As Double
len_sq = C * C + D * D
Dim param As Double
param = -1
If (len_sq <> 0) Then
param = dot / len_sq
End If
Dim xx As Double
Dim yy As Double
If (param < 0) Then
xx = x1
yy = y1
ElseIf (param > 1) Then
xx = x2
yy = y2
Else
xx = x1 + param * C
yy = y1 + param * D
End If
Dim dx As Double
dx = x - xx
Dim dy As Double
dy = y - yy
DistanceToSegment = Math.Sqr(dx * dx + dy * dy)
End Function
2D坐标数组的Python Numpy实现:
import numpy as np
def dist2d(p1, p2, coords):
''' Distance from points to a finite line btwn p1 -> p2 '''
assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
dp = p2 - p1
st = dp[0]**2 + dp[1]**2
u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st
u[u > 1.] = 1.
u[u < 0.] = 0.
dx = (p1[0] + u * dp[0]) - coords[:, 0]
dy = (p1[1] + u * dp[1]) - coords[:, 1]
return np.sqrt(dx**2 + dy**2)
# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])
# List of coordinates
coords = np.array(
[[0., 0.],
[5., 5.],
[10., 10.],
[20., 20.]
])
d = dist2d(p1, p2, coords)
# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])
在我自己的问题线程如何计算在C, c# / .NET 2.0或Java的所有情况下一个点和线段之间的最短2D距离?当我找到一个c#的答案时,我被要求把它放在这里:所以它是从http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static修改的:
//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
double[] AB = new double[2];
double[] BC = new double[2];
AB[0] = pointB[0] - pointA[0];
AB[1] = pointB[1] - pointA[1];
BC[0] = pointC[0] - pointB[0];
BC[1] = pointC[1] - pointB[1];
double dot = AB[0] * BC[0] + AB[1] * BC[1];
return dot;
}
//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
double[] AB = new double[2];
double[] AC = new double[2];
AB[0] = pointB[0] - pointA[0];
AB[1] = pointB[1] - pointA[1];
AC[0] = pointC[0] - pointA[0];
AC[1] = pointC[1] - pointA[1];
double cross = AB[0] * AC[1] - AB[1] * AC[0];
return cross;
}
//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
double d1 = pointA[0] - pointB[0];
double d2 = pointA[1] - pointB[1];
return Math.Sqrt(d1 * d1 + d2 * d2);
}
//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC,
bool isSegment)
{
double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
if (isSegment)
{
double dot1 = DotProduct(pointA, pointB, pointC);
if (dot1 > 0)
return Distance(pointB, pointC);
double dot2 = DotProduct(pointB, pointA, pointC);
if (dot2 > 0)
return Distance(pointA, pointC);
}
return Math.Abs(dist);
}
我不是要回答问题,而是要问问题,所以我希望我不会因为某些原因而得到数百万张反对票,而是批评。我只是想(并被鼓励)分享其他人的想法,因为这个帖子中的解决方案要么是用一些奇异的语言(Fortran, Mathematica),要么被某人标记为错误。对我来说唯一有用的(由Grumdrig编写)是用c++编写的,没有人标记它有错误。但是它缺少被调用的方法(dot等)。
在f#中,点c到a和b之间的线段的距离为:
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
向量d沿着线段从a指向b。d/s与c-a的点积给出了无限直线与点c之间最接近点的参数。使用min和max函数将该参数钳制到范围0..s,使该点位于a和b之间。最后,a+p-c的长度是c到线段上最近点的距离。
使用示例:
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))