我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

一个2D和3D的解决方案

考虑基底的变化,使得线段变成(0,0,0)-(d, 0,0)和点(u, v, 0)。在这个平面上,最短的距离由

    u ≤ 0 -> d(A, C)
0 ≤ u ≤ d -> |v|
d ≤ u     -> d(B, C)

(到其中一个端点或到支撑线的距离,取决于到该线的投影。等距轨迹由两个半圆和两条线段组成。)

式中,d为AB线段的长度,u、v分别为AB/d (AB方向的单位矢量)与AC的标量积和外积的模量。

AB.AC ≤ 0             -> |AC|
    0 ≤ AB.AC ≤ AB²   -> |ABxAC|/|AB|
          AB² ≤ AB.AC -> |BC|

其他回答

在我自己的问题线程如何计算在C, c# / .NET 2.0或Java的所有情况下一个点和线段之间的最短2D距离?当我找到一个c#的答案时,我被要求把它放在这里:所以它是从http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static修改的:

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

我不是要回答问题,而是要问问题,所以我希望我不会因为某些原因而得到数百万张反对票,而是批评。我只是想(并被鼓励)分享其他人的想法,因为这个帖子中的解决方案要么是用一些奇异的语言(Fortran, Mathematica),要么被某人标记为错误。对我来说唯一有用的(由Grumdrig编写)是用c++编写的,没有人标记它有错误。但是它缺少被调用的方法(dot等)。

快速实现http://paulbourke.net/geometry/pointlineplane/source.c

    static func magnitude(p1: CGPoint, p2: CGPoint) -> CGFloat {
        let vector = CGPoint(x: p2.x - p1.x, y: p2.y - p1.y)
        return sqrt(pow(vector.x, 2) + pow(vector.y, 2))
    }

    /// http://paulbourke.net/geometry/pointlineplane/
    /// http://paulbourke.net/geometry/pointlineplane/source.c
    static func pointDistanceToLine(point: CGPoint, lineStart: CGPoint, lineEnd: CGPoint) -> CGFloat? {

        let lineMag = magnitude(p1: lineEnd, p2: lineStart)
        let u = (((point.x - lineStart.x) * (lineEnd.x - lineStart.x)) +
                ((point.y - lineStart.y) * (lineEnd.y - lineStart.y))) /
                (lineMag * lineMag)

        if u < 0 || u > 1 {
            // closest point does not fall within the line segment
            return nil
        }

        let intersectionX = lineStart.x + u * (lineEnd.x - lineStart.x)
        let intersectionY = lineStart.y + u * (lineEnd.y - lineStart.y)

        return magnitude(p1: point, p2: CGPoint(x: intersectionX, y: intersectionY))
    }

本想在GLSL中这样做,但如果可能的话,最好避免所有这些条件。使用clamp()可以避免两种端点情况:

// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
    vec3 AP = P - A, AB = B - A;
    float l = dot(AB, AB);
    if (l <= 0.0000001) return A;    // A and B are practically the same
    return AP - AB*clamp(dot(AP, AB)/l, 0.0, 1.0);  // do the projection
}

如果您可以确定A和B彼此不会非常接近,则可以简化为删除If()。事实上,即使A和B是相同的,我的GPU仍然给出了这个无条件版本的正确结果(但这是使用pre-OpenGL 4.1,其中GLSL除零是未定义的):

// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
    vec3 AP = P - A, AB = B - A;
    return AP - AB*clamp(dot(AP, AB)/dot(AB, AB), 0.0, 1.0);
}

计算距离是很简单的——GLSL提供了一个distance()函数,你可以在这个最近的点和P。

灵感来自Iñigo Quilez的胶囊距离函数代码

这是我最后写的代码。这段代码假设一个点以{x:5, y:7}的形式定义。注意,这不是绝对最有效的方法,但它是我能想到的最简单、最容易理解的代码。

// a, b, and c in the code below are all points

function distance(a, b)
{
    var dx = a.x - b.x;
    var dy = a.y - b.y;
    return Math.sqrt(dx*dx + dy*dy);
}

function Segment(a, b)
{
    var ab = {
        x: b.x - a.x,
        y: b.y - a.y
    };
    var length = distance(a, b);

    function cross(c) {
        return ab.x * (c.y-a.y) - ab.y * (c.x-a.x);
    };

    this.distanceFrom = function(c) {
        return Math.min(distance(a,c),
                        distance(b,c),
                        Math.abs(cross(c) / length));
    };
}

2D坐标数组的Python Numpy实现:

import numpy as np


def dist2d(p1, p2, coords):
    ''' Distance from points to a finite line btwn p1 -> p2 '''
    assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
    dp = p2 - p1
    st = dp[0]**2 + dp[1]**2
    u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st

    u[u > 1.] = 1.
    u[u < 0.] = 0.

    dx = (p1[0] + u * dp[0]) - coords[:, 0]
    dy = (p1[1] + u * dp[1]) - coords[:, 1]

    return np.sqrt(dx**2 + dy**2)


# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])

# List of coordinates
coords = np.array(
    [[0., 0.],
     [5., 5.],
     [10., 10.],
     [20., 20.]
     ])

d = dist2d(p1, p2, coords)

# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])