我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
用Matlab直接实现Grumdrig
function ans=distP2S(px,py,vx,vy,wx,wy)
% [px py vx vy wx wy]
t=( (px-vx)*(wx-vx)+(py-vy)*(wy-vy) )/idist(vx,wx,vy,wy)^2;
[idist(px,vx,py,vy) idist(px,vx+t*(wx-vx),py,vy+t*(wy-vy)) idist(px,wx,py,wy) ];
ans(1+(t>0)+(t>1)); % <0 0<=t<=1 t>1
end
function d=idist(a,b,c,d)
d=abs(a-b+1i*(c-d));
end
其他回答
该算法基于求出指定直线与包含指定点的正交直线的交点,并计算其距离。在线段的情况下,我们必须检查交点是否在线段的点之间,如果不是这样,则最小距离是指定点与线段的一个端点之间的距离。这是一个c#实现。
Double Distance(Point a, Point b)
{
double xdiff = a.X - b.X, ydiff = a.Y - b.Y;
return Math.Sqrt((long)xdiff * xdiff + (long)ydiff * ydiff);
}
Boolean IsBetween(double x, double a, double b)
{
return ((a <= b && x >= a && x <= b) || (a > b && x <= a && x >= b));
}
Double GetDistance(Point pt, Point pt1, Point pt2, out Point intersection)
{
Double a, x, y, R;
if (pt1.X != pt2.X) {
a = (double)(pt2.Y - pt1.Y) / (pt2.X - pt1.X);
x = (a * (pt.Y - pt1.Y) + a * a * pt1.X + pt.X) / (a * a + 1);
y = a * x + pt1.Y - a * pt1.X; }
else { x = pt1.X; y = pt.Y; }
if (IsBetween(x, pt1.X, pt2.X) && IsBetween(y, pt1.Y, pt2.Y)) {
intersection = new Point((int)x, (int)y);
R = Distance(intersection, pt); }
else {
double d1 = Distance(pt, pt1), d2 = Distance(pt, pt2);
if (d1 < d2) { intersection = pt1; R = d1; }
else { intersection = pt2; R = d2; }}
return R;
}
您可以尝试PHP geo-math-php的库
composer require rkondratuk/geo-math-php:^1
例子:
<?php
use PhpGeoMath\Model\GeoSegment;
use PhpGeoMath\Model\Polar3dPoint;
$polarPoint1 = new Polar3dPoint(
40.758742779050706, -73.97855507715238, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$polarPoint2 = new Polar3dPoint(
40.74843388072615, -73.98566565776102, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$polarPoint3 = new Polar3dPoint(
40.74919365249446, -73.98133456388013, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$arcSegment = new GeoSegment($polarPoint1, $polarPoint2);
$nearestPolarPoint = $arcSegment->calcNearestPoint($polarPoint3);
// Shortest distance from point-3 to segment(point-1, point-2)
$geoDistance = $nearestPolarPoint->calcGeoDistanceToPoint($polarPoint3);
Grumdrig的c++ /JavaScript实现对我来说非常有用,所以我提供了我正在使用的Python直接端口。完整的代码在这里。
class Point(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def square(x):
return x * x
def distance_squared(v, w):
return square(v.x - w.x) + square(v.y - w.y)
def distance_point_segment_squared(p, v, w):
# Segment length squared, |w-v|^2
d2 = distance_squared(v, w)
if d2 == 0:
# v == w, return distance to v
return distance_squared(p, v)
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
if t < 0:
# Beyond v end of the segment
return distance_squared(p, v)
elif t > 1.0:
# Beyond w end of the segment
return distance_squared(p, w)
else:
# Projection falls on the segment.
proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
# print proj.x, proj.y
return distance_squared(p, proj)
这个答案是基于公认答案的JavaScript解决方案。 它主要只是格式更好,函数名更长,当然函数语法更短,因为它是在ES6 + CoffeeScript中。
JavaScript版本(ES6)
distanceSquared = (v, w)=> Math.pow(v.x - w.x, 2) + Math.pow(v.y - w.y, 2);
distance = (v, w)=> Math.sqrt(distanceSquared(v, w));
distanceToLineSegmentSquared = (p, v, w)=> {
l2 = distanceSquared(v, w);
if (l2 === 0) {
return distanceSquared(p, v);
}
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
t = Math.max(0, Math.min(1, t));
return distanceSquared(p, {
x: v.x + t * (w.x - v.x),
y: v.y + t * (w.y - v.y)
});
}
distanceToLineSegment = (p, v, w)=> {
return Math.sqrt(distanceToLineSegmentSquared(p, v));
}
CoffeeScript版本
distanceSquared = (v, w)-> (v.x - w.x) ** 2 + (v.y - w.y) ** 2
distance = (v, w)-> Math.sqrt(distanceSquared(v, w))
distanceToLineSegmentSquared = (p, v, w)->
l2 = distanceSquared(v, w)
return distanceSquared(p, v) if l2 is 0
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2
t = Math.max(0, Math.min(1, t))
distanceSquared(p, {
x: v.x + t * (w.x - v.x)
y: v.y + t * (w.y - v.y)
})
distanceToLineSegment = (p, v, w)->
Math.sqrt(distanceToLineSegmentSquared(p, v, w))
请参见以下网站中的Matlab几何工具箱: http://people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html
按Ctrl +f,输入“segment”,查找线段相关函数。函数“segment_point_dist_2d.”和segment_point_dist_3d。M "是你需要的。
几何代码有C版本、c++版本、FORTRAN77版本、FORTRAN90版本和MATLAB版本。