我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

基于Joshua Javascript的AutoHotkeys版本:

plDist(x, y, x1, y1, x2, y2) {
    A:= x - x1
    B:= y - y1
    C:= x2 - x1
    D:= y2 - y1

    dot:= A*C + B*D
    sqLen:= C*C + D*D
    param:= dot / sqLen

    if (param < 0 || ((x1 = x2) && (y1 = y2))) {
        xx:= x1
        yy:= y1
    } else if (param > 1) {
        xx:= x2
        yy:= y2
    } else {
        xx:= x1 + param*C
        yy:= y1 + param*D
    }

    dx:= x - xx
    dy:= y - yy

    return sqrt(dx*dx + dy*dy)
}

其他回答

in R

     #distance beetween segment ab and point c in 2D space
getDistance_ort_2 <- function(a, b, c){
  #go to complex numbers
  A<-c(a[1]+1i*a[2],b[1]+1i*b[2])
  q=c[1]+1i*c[2]
  
  #function to get coefficients of line (ab)
  getAlphaBeta <- function(A)
  { a<-Re(A[2])-Re(A[1])
    b<-Im(A[2])-Im(A[1])
    ab<-as.numeric()
    ab[1] <- -Re(A[1])*b/a+Im(A[1])
    ab[2] <-b/a
    if(Im(A[1])==Im(A[2])) ab<- c(Im(A[1]),0)
    if(Re(A[1])==Re(A[2])) ab <- NA
    return(ab)
  }
  
  #function to get coefficients of line ortogonal to line (ab) which goes through point q
  getAlphaBeta_ort<-function(A,q)
  { ab <- getAlphaBeta(A) 
  coef<-c(Re(q)/ab[2]+Im(q),-1/ab[2])
  if(Re(A[1])==Re(A[2])) coef<-c(Im(q),0)
  return(coef)
  }
  
  #function to get coordinates of interception point 
  #between line (ab) and its ortogonal which goes through point q
  getIntersection_ort <- function(A, q){
    A.ab <- getAlphaBeta(A)
    q.ab <- getAlphaBeta_ort(A,q)
    if (!is.na(A.ab[1])&A.ab[2]==0) {
      x<-Re(q)
      y<-Im(A[1])}
    if (is.na(A.ab[1])) {
      x<-Re(A[1])
      y<-Im(q)
    } 
    if (!is.na(A.ab[1])&A.ab[2]!=0) {
      x <- (q.ab[1] - A.ab[1])/(A.ab[2] - q.ab[2])
      y <- q.ab[1] + q.ab[2]*x}
    xy <- x + 1i*y  
    return(xy)
  }
  
  intersect<-getIntersection_ort(A,q)
  if ((Mod(A[1]-intersect)+Mod(A[2]-intersect))>Mod(A[1]-A[2])) {dist<-min(Mod(A[1]-q),Mod(A[2]-q))
  } else dist<-Mod(q-intersect)
  return(dist)
}



 

嘿,我昨天才写的。它在Actionscript 3.0中,基本上是Javascript,尽管你可能没有相同的Point类。

//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.  
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
    var nearestPt:Point; //closest point on seqment to pt

    var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
    var bLenSq:Number = dot( b, b ); //Segment length squared

    if( keyDot <= 0 )  //pt is "behind" st, use st
    {
        nearestPt = st  
    }
    else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
    {
        nearestPt = st.add(b);
    }
    else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
    {
        var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
        var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
        nearestPt = st.add(partOfB);
    }

    var dist:Number = (pt.subtract(nearestPt)).length;

    return dist;
}

此外,这里有一个关于这个问题的相当完整和可读的讨论:notejot.com

这是一个自成体系的Delphi / Pascal版本的函数,基于上面约书亚的答案。使用TPoint用于VCL屏幕图形,但应该易于根据需要进行调整。

function DistancePtToSegment( pt, pt1, pt2: TPoint): double;
var
   a, b, c, d: double;
   len_sq: double;
   param: double;
   xx, yy: double;
   dx, dy: double;
begin
   a := pt.x - pt1.x;
   b := pt.y - pt1.y;
   c := pt2.x - pt1.x;
   d := pt2.y - pt1.y;

   len_sq := (c * c) + (d * d);
   param := -1;

   if (len_sq <> 0) then
   begin
      param := ((a * c) + (b * d)) / len_sq;
   end;

   if param < 0 then
   begin
      xx := pt1.x;
      yy := pt1.y;
   end
   else if param > 1 then
   begin
      xx := pt2.x;
      yy := pt2.y;
   end
   else begin
      xx := pt1.x + param * c;
      yy := pt1.y + param * d;
   end;

   dx := pt.x - xx;
   dy := pt.y - yy;
   result := sqrt( (dx * dx) + (dy * dy))
end;

只是遇到了这个,我想我应该添加一个Lua实现。它假设点以表{x=xVal, y=yVal}给出,直线或线段由包含两个点的表给出(见下面的例子):

function distance( P1, P2 )
    return math.sqrt((P1.x-P2.x)^2 + (P1.y-P2.y)^2)
end

-- Returns false if the point lies beyond the reaches of the segment
function distPointToSegment( line, P )
    if line[1].x == line[2].x and line[1].y == line[2].y then
        print("Error: Not a line!")
        return false
    end

    local d = distance( line[1], line[2] )

    local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)

    local projection = {}
    projection.x = line[1].x + t*(line[2].x-line[1].x)
    projection.y = line[1].y + t*(line[2].y-line[1].y)

    if t >= 0 and t <= 1 then   -- within line segment?
        return distance( projection, {x=P.x, y=P.y} )
    else
        return false
    end
end

-- Returns value even if point is further down the line (outside segment)
function distPointToLine( line, P )
    if line[1].x == line[2].x and line[1].y == line[2].y then
        print("Error: Not a line!")
        return false
    end

    local d = distance( line[1], line[2] )

    local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)

    local projection = {}
    projection.x = line[1].x + t*(line[2].x-line[1].x)
    projection.y = line[1].y + t*(line[2].y-line[1].y)

    return distance( projection, {x=P.x, y=P.y} )
end

使用示例:

local P1 = {x = 0, y = 0}
local P2 = {x = 10, y = 10}
local line = { P1, P2 }
local P3 = {x = 7, y = 15}
print(distPointToLine( line, P3 ))  -- prints 5.6568542494924
print(distPointToSegment( line, P3 )) -- prints false

看起来几乎每个人都在StackOverflow上贡献了一个答案(目前为止有23个答案),所以这里是我对c#的贡献。这主要是基于M. Katz的回答,而Katz的回答又基于Grumdrig的回答。

   public struct MyVector
   {
      private readonly double _x, _y;


      // Constructor
      public MyVector(double x, double y)
      {
         _x = x;
         _y = y;
      }


      // Distance from this point to another point, squared
      private double DistanceSquared(MyVector otherPoint)
      {
         double dx = otherPoint._x - this._x;
         double dy = otherPoint._y - this._y;
         return dx * dx + dy * dy;
      }


      // Find the distance from this point to a line segment (which is not the same as from this 
      //  point to anywhere on an infinite line). Also returns the closest point.
      public double DistanceToLineSegment(MyVector lineSegmentPoint1, MyVector lineSegmentPoint2,
                                          out MyVector closestPoint)
      {
         return Math.Sqrt(DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                          out closestPoint));
      }


      // Same as above, but avoid using Sqrt(), saves a new nanoseconds in cases where you only want 
      //  to compare several distances to find the smallest or largest, but don't need the distance
      public double DistanceToLineSegmentSquared(MyVector lineSegmentPoint1, 
                                              MyVector lineSegmentPoint2, out MyVector closestPoint)
      {
         // Compute length of line segment (squared) and handle special case of coincident points
         double segmentLengthSquared = lineSegmentPoint1.DistanceSquared(lineSegmentPoint2);
         if (segmentLengthSquared < 1E-7f)  // Arbitrary "close enough for government work" value
         {
            closestPoint = lineSegmentPoint1;
            return this.DistanceSquared(closestPoint);
         }

         // Use the magic formula to compute the "projection" of this point on the infinite line
         MyVector lineSegment = lineSegmentPoint2 - lineSegmentPoint1;
         double t = (this - lineSegmentPoint1).DotProduct(lineSegment) / segmentLengthSquared;

         // Handle the two cases where the projection is not on the line segment, and the case where 
         //  the projection is on the segment
         if (t <= 0)
            closestPoint = lineSegmentPoint1;
         else if (t >= 1)
            closestPoint = lineSegmentPoint2;
         else 
            closestPoint = lineSegmentPoint1 + (lineSegment * t);
         return this.DistanceSquared(closestPoint);
      }


      public double DotProduct(MyVector otherVector)
      {
         return this._x * otherVector._x + this._y * otherVector._y;
      }

      public static MyVector operator +(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x + rightVector._x, leftVector._y + rightVector._y);
      }

      public static MyVector operator -(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x - rightVector._x, leftVector._y - rightVector._y);
      }

      public static MyVector operator *(MyVector aVector, double aScalar)
      {
         return new MyVector(aVector._x * aScalar, aVector._y * aScalar);
      }

      // Added using ReSharper due to CodeAnalysis nagging

      public bool Equals(MyVector other)
      {
         return _x.Equals(other._x) && _y.Equals(other._y);
      }

      public override bool Equals(object obj)
      {
         if (ReferenceEquals(null, obj)) return false;
         return obj is MyVector && Equals((MyVector) obj);
      }

      public override int GetHashCode()
      {
         unchecked
         {
            return (_x.GetHashCode()*397) ^ _y.GetHashCode();
         }
      }

      public static bool operator ==(MyVector left, MyVector right)
      {
         return left.Equals(right);
      }

      public static bool operator !=(MyVector left, MyVector right)
      {
         return !left.Equals(right);
      }
   }

这是一个小测试程序。

   public static class JustTesting
   {
      public static void Main()
      {
         Stopwatch stopwatch = new Stopwatch();
         stopwatch.Start();

         for (int i = 0; i < 10000000; i++)
         {
            TestIt(1, 0, 0, 0, 1, 1, 0.70710678118654757);
            TestIt(5, 4, 0, 0, 20, 10, 1.3416407864998738);
            TestIt(30, 15, 0, 0, 20, 10, 11.180339887498949);
            TestIt(-30, 15, 0, 0, 20, 10, 33.541019662496844);
            TestIt(5, 1, 0, 0, 10, 0, 1.0);
            TestIt(1, 5, 0, 0, 0, 10, 1.0);
         }

         stopwatch.Stop();
         TimeSpan timeSpan = stopwatch.Elapsed;
      }


      private static void TestIt(float aPointX, float aPointY, 
                                 float lineSegmentPoint1X, float lineSegmentPoint1Y, 
                                 float lineSegmentPoint2X, float lineSegmentPoint2Y, 
                                 double expectedAnswer)
      {
         // Katz
         double d1 = DistanceFromPointToLineSegment(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(d1 == expectedAnswer);

         /*
         // Katz using squared distance
         double d2 = DistanceFromPointToLineSegmentSquared(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d2 - expectedAnswer * expectedAnswer) < 1E-7f);
          */

         /*
         // Matti (optimized)
         double d3 = FloatVector.DistanceToLineSegment(new PointF(aPointX, aPointY), 
                                                new PointF(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                                new PointF(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d3 - expectedAnswer) < 1E-7f);
          */
      }

      private static double DistanceFromPointToLineSegment(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegment(lineSegmentPoint1, lineSegmentPoint2, 
                                             out closestPoint);
      }

      private static double DistanceFromPointToLineSegmentSquared(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                                                    out closestPoint);
      }
   }

如您所见,我试图衡量使用避免Sqrt()方法的版本与使用普通版本之间的差异。我的测试表明你可能可以节省2.5%,但我甚至不确定——各种测试运行中的变化是相同的数量级。我还试着测量了Matti发布的版本(加上一个明显的优化),该版本似乎比基于Katz/Grumdrig代码的版本慢了大约4%。

编辑:顺便说一句,我还尝试过测量一种方法,该方法使用叉乘(和平方根())来查找到无限直线(不是线段)的距离,它大约快32%。