我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

这是一个自成体系的Delphi / Pascal版本的函数,基于上面约书亚的答案。使用TPoint用于VCL屏幕图形,但应该易于根据需要进行调整。

function DistancePtToSegment( pt, pt1, pt2: TPoint): double;
var
   a, b, c, d: double;
   len_sq: double;
   param: double;
   xx, yy: double;
   dx, dy: double;
begin
   a := pt.x - pt1.x;
   b := pt.y - pt1.y;
   c := pt2.x - pt1.x;
   d := pt2.y - pt1.y;

   len_sq := (c * c) + (d * d);
   param := -1;

   if (len_sq <> 0) then
   begin
      param := ((a * c) + (b * d)) / len_sq;
   end;

   if param < 0 then
   begin
      xx := pt1.x;
      yy := pt1.y;
   end
   else if param > 1 then
   begin
      xx := pt2.x;
      yy := pt2.y;
   end
   else begin
      xx := pt1.x + param * c;
      yy := pt1.y + param * d;
   end;

   dx := pt.x - xx;
   dy := pt.y - yy;
   result := sqrt( (dx * dx) + (dy * dy))
end;

其他回答

这是我最后写的代码。这段代码假设一个点以{x:5, y:7}的形式定义。注意,这不是绝对最有效的方法,但它是我能想到的最简单、最容易理解的代码。

// a, b, and c in the code below are all points

function distance(a, b)
{
    var dx = a.x - b.x;
    var dy = a.y - b.y;
    return Math.sqrt(dx*dx + dy*dy);
}

function Segment(a, b)
{
    var ab = {
        x: b.x - a.x,
        y: b.y - a.y
    };
    var length = distance(a, b);

    function cross(c) {
        return ab.x * (c.y-a.y) - ab.y * (c.x-a.x);
    };

    this.distanceFrom = function(c) {
        return Math.min(distance(a,c),
                        distance(b,c),
                        Math.abs(cross(c) / length));
    };
}

看起来几乎每个人都在StackOverflow上贡献了一个答案(目前为止有23个答案),所以这里是我对c#的贡献。这主要是基于M. Katz的回答,而Katz的回答又基于Grumdrig的回答。

   public struct MyVector
   {
      private readonly double _x, _y;


      // Constructor
      public MyVector(double x, double y)
      {
         _x = x;
         _y = y;
      }


      // Distance from this point to another point, squared
      private double DistanceSquared(MyVector otherPoint)
      {
         double dx = otherPoint._x - this._x;
         double dy = otherPoint._y - this._y;
         return dx * dx + dy * dy;
      }


      // Find the distance from this point to a line segment (which is not the same as from this 
      //  point to anywhere on an infinite line). Also returns the closest point.
      public double DistanceToLineSegment(MyVector lineSegmentPoint1, MyVector lineSegmentPoint2,
                                          out MyVector closestPoint)
      {
         return Math.Sqrt(DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                          out closestPoint));
      }


      // Same as above, but avoid using Sqrt(), saves a new nanoseconds in cases where you only want 
      //  to compare several distances to find the smallest or largest, but don't need the distance
      public double DistanceToLineSegmentSquared(MyVector lineSegmentPoint1, 
                                              MyVector lineSegmentPoint2, out MyVector closestPoint)
      {
         // Compute length of line segment (squared) and handle special case of coincident points
         double segmentLengthSquared = lineSegmentPoint1.DistanceSquared(lineSegmentPoint2);
         if (segmentLengthSquared < 1E-7f)  // Arbitrary "close enough for government work" value
         {
            closestPoint = lineSegmentPoint1;
            return this.DistanceSquared(closestPoint);
         }

         // Use the magic formula to compute the "projection" of this point on the infinite line
         MyVector lineSegment = lineSegmentPoint2 - lineSegmentPoint1;
         double t = (this - lineSegmentPoint1).DotProduct(lineSegment) / segmentLengthSquared;

         // Handle the two cases where the projection is not on the line segment, and the case where 
         //  the projection is on the segment
         if (t <= 0)
            closestPoint = lineSegmentPoint1;
         else if (t >= 1)
            closestPoint = lineSegmentPoint2;
         else 
            closestPoint = lineSegmentPoint1 + (lineSegment * t);
         return this.DistanceSquared(closestPoint);
      }


      public double DotProduct(MyVector otherVector)
      {
         return this._x * otherVector._x + this._y * otherVector._y;
      }

      public static MyVector operator +(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x + rightVector._x, leftVector._y + rightVector._y);
      }

      public static MyVector operator -(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x - rightVector._x, leftVector._y - rightVector._y);
      }

      public static MyVector operator *(MyVector aVector, double aScalar)
      {
         return new MyVector(aVector._x * aScalar, aVector._y * aScalar);
      }

      // Added using ReSharper due to CodeAnalysis nagging

      public bool Equals(MyVector other)
      {
         return _x.Equals(other._x) && _y.Equals(other._y);
      }

      public override bool Equals(object obj)
      {
         if (ReferenceEquals(null, obj)) return false;
         return obj is MyVector && Equals((MyVector) obj);
      }

      public override int GetHashCode()
      {
         unchecked
         {
            return (_x.GetHashCode()*397) ^ _y.GetHashCode();
         }
      }

      public static bool operator ==(MyVector left, MyVector right)
      {
         return left.Equals(right);
      }

      public static bool operator !=(MyVector left, MyVector right)
      {
         return !left.Equals(right);
      }
   }

这是一个小测试程序。

   public static class JustTesting
   {
      public static void Main()
      {
         Stopwatch stopwatch = new Stopwatch();
         stopwatch.Start();

         for (int i = 0; i < 10000000; i++)
         {
            TestIt(1, 0, 0, 0, 1, 1, 0.70710678118654757);
            TestIt(5, 4, 0, 0, 20, 10, 1.3416407864998738);
            TestIt(30, 15, 0, 0, 20, 10, 11.180339887498949);
            TestIt(-30, 15, 0, 0, 20, 10, 33.541019662496844);
            TestIt(5, 1, 0, 0, 10, 0, 1.0);
            TestIt(1, 5, 0, 0, 0, 10, 1.0);
         }

         stopwatch.Stop();
         TimeSpan timeSpan = stopwatch.Elapsed;
      }


      private static void TestIt(float aPointX, float aPointY, 
                                 float lineSegmentPoint1X, float lineSegmentPoint1Y, 
                                 float lineSegmentPoint2X, float lineSegmentPoint2Y, 
                                 double expectedAnswer)
      {
         // Katz
         double d1 = DistanceFromPointToLineSegment(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(d1 == expectedAnswer);

         /*
         // Katz using squared distance
         double d2 = DistanceFromPointToLineSegmentSquared(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d2 - expectedAnswer * expectedAnswer) < 1E-7f);
          */

         /*
         // Matti (optimized)
         double d3 = FloatVector.DistanceToLineSegment(new PointF(aPointX, aPointY), 
                                                new PointF(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                                new PointF(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d3 - expectedAnswer) < 1E-7f);
          */
      }

      private static double DistanceFromPointToLineSegment(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegment(lineSegmentPoint1, lineSegmentPoint2, 
                                             out closestPoint);
      }

      private static double DistanceFromPointToLineSegmentSquared(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                                                    out closestPoint);
      }
   }

如您所见,我试图衡量使用避免Sqrt()方法的版本与使用普通版本之间的差异。我的测试表明你可能可以节省2.5%,但我甚至不确定——各种测试运行中的变化是相同的数量级。我还试着测量了Matti发布的版本(加上一个明显的优化),该版本似乎比基于Katz/Grumdrig代码的版本慢了大约4%。

编辑:顺便说一句,我还尝试过测量一种方法,该方法使用叉乘(和平方根())来查找到无限直线(不是线段)的距离,它大约快32%。

我制作了一个交互式Desmos图来演示如何实现这一点:

https://www.desmos.com/calculator/kswrm8ddum

红点是A点,绿点是B点,C点是蓝色点。 您可以拖动图形中的点来查看值的变化。 左边的值“s”是线段的参数(即s = 0表示点A, s = 1表示点B)。 值“d”是第三点到经过A和B的直线的距离。

编辑:

有趣的小见解:坐标(s, d)是坐标系中第三点C的坐标,AB是单位x轴,单位y轴垂直于AB。

JavaScript中一个基于这个公式的更简洁的解决方案:

distToSegment: function (point, linePointA, linePointB){

    var x0 = point.X;
    var y0 = point.Y;

    var x1 = linePointA.X;
    var y1 = linePointA.Y;

    var x2 = linePointB.X;
    var y2 = linePointB.Y;

    var Dx = (x2 - x1);
    var Dy = (y2 - y1);

    var numerator = Math.abs(Dy*x0 - Dx*y0 - x1*y2 + x2*y1);
    var denominator = Math.sqrt(Dx*Dx + Dy*Dy);
    if (denominator == 0) {
        return this.dist2(point, linePointA);
    }

    return numerator/denominator;

}

使用arctangents的一行解决方案:

思路是将A移动到(0,0),并顺时针旋转三角形,使C位于X轴上, 当这种情况发生时,By就是距离。

a角= Atan(Cy - Ay, Cx - Ax); b角= Atan(By - Ay, Bx - Ax); AB长度=平方根((Bx - Ax)²+ (By - Ay)²) By = Sin (bAngle - aAngle) * ABLength

C#

public double Distance(Point a, Point b, Point c)
{
    // normalize points
    Point cn = new Point(c.X - a.X, c.Y - a.Y);
    Point bn = new Point(b.X - a.X, b.Y - a.Y);

    double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
    double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);

    return Math.Sin(angle)*abLength;
}

一行c#(要转换为SQL)

double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))