在c#中是否有默认/官方/推荐的方法来解析CSV文件?我不想滚动自己的解析器。
另外,我也见过人们使用ODBC/OLE DB通过文本驱动程序读取CSV的实例,很多人因为它的“缺点”而不鼓励这样做。这些缺点是什么?
理想情况下,我正在寻找一种方法,通过它我可以通过列名读取CSV,使用第一个记录作为报头/字段名。给出的一些答案是正确的,但基本上是将文件反序列化为类。
在c#中是否有默认/官方/推荐的方法来解析CSV文件?我不想滚动自己的解析器。
另外,我也见过人们使用ODBC/OLE DB通过文本驱动程序读取CSV的实例,很多人因为它的“缺点”而不鼓励这样做。这些缺点是什么?
理想情况下,我正在寻找一种方法,通过它我可以通过列名读取CSV,使用第一个记录作为报头/字段名。给出的一些答案是正确的,但基本上是将文件反序列化为类。
当前回答
对于较小的CSV输入数据,LINQ是完全足够的。 以以下CSV文件内容为例:
schema_name、描述utype “IX_HE”、“高能量数据”,“x” “III_spectro”、“Spectrosopic数据”、“d” “VI_misc”、“杂”、“f” “vcds1”,“目录只在cd上提供”,“d” “J_other”,“其他期刊发表的文章”,“b”
当我们将整个内容读入一个名为data的字符串时,则
using System;
using System.IO;
using System.Linq;
var data = File.ReadAllText(Path2CSV);
// helper split characters
var newline = Environment.NewLine.ToCharArray();
var comma = ",".ToCharArray();
var quote = "\"".ToCharArray();
// split input string data to lines
var lines = data.Split(newline);
// first line is header, take the header fields
foreach (var col in lines.First().Split(comma)) {
// do something with "col"
}
// we skip the first line, all the rest are real data lines/fields
foreach (var line in lines.Skip(1)) {
// first we split the data line by comma character
// next we remove double qoutes from each splitted element using Trim()
// finally we make an array
var fields = line.Split(comma)
.Select(_ => { _ = _.Trim(quote); return _; })
.ToArray();
// do something with the "fields" array
}
其他回答
这个列表中的另一个,Cinchoo ETL -一个开源库,可以读写多种文件格式(CSV,平面文件,Xml, JSON等)
下面的示例显示了如何快速读取CSV文件(不需要POCO对象)
string csv = @"Id, Name
1, Carl
2, Tom
3, Mark";
using (var p = ChoCSVReader.LoadText(csv)
.WithFirstLineHeader()
)
{
foreach (var rec in p)
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}
}
下面的示例展示了如何使用POCO对象读取CSV文件
public partial class EmployeeRec
{
public int Id { get; set; }
public string Name { get; set; }
}
static void CSVTest()
{
string csv = @"Id, Name
1, Carl
2, Tom
3, Mark";
using (var p = ChoCSVReader<EmployeeRec>.LoadText(csv)
.WithFirstLineHeader()
)
{
foreach (var rec in p)
{
Console.WriteLine($"Id: {rec.Id}");
Console.WriteLine($"Name: {rec.Name}");
}
}
}
请在CodeProject上查看如何使用它的文章。
单源文件解决方案用于简单的解析需求,非常有用。处理所有令人讨厌的边缘情况。比如新行归一化和在带引号的字符串字面量中处理新行。你的欢迎!
如果您的CSV文件有一个标题,您只需从第一行读出列名(并计算列索引)。就这么简单。
注意Dump是一个LINQPad方法,如果你不使用LINQPad,你可能想要删除它。
void Main()
{
var file1 = "a,b,c\r\nx,y,z";
CSV.ParseText(file1).Dump();
var file2 = "a,\"b\",c\r\nx,\"y,z\"";
CSV.ParseText(file2).Dump();
var file3 = "a,\"b\",c\r\nx,\"y\r\nz\"";
CSV.ParseText(file3).Dump();
var file4 = "\"\"\"\"";
CSV.ParseText(file4).Dump();
}
static class CSV
{
public struct Record
{
public readonly string[] Row;
public string this[int index] => Row[index];
public Record(string[] row)
{
Row = row;
}
}
public static List<Record> ParseText(string text)
{
return Parse(new StringReader(text));
}
public static List<Record> ParseFile(string fn)
{
using (var reader = File.OpenText(fn))
{
return Parse(reader);
}
}
public static List<Record> Parse(TextReader reader)
{
var data = new List<Record>();
var col = new StringBuilder();
var row = new List<string>();
for (; ; )
{
var ln = reader.ReadLine();
if (ln == null) break;
if (Tokenize(ln, col, row))
{
data.Add(new Record(row.ToArray()));
row.Clear();
}
}
return data;
}
public static bool Tokenize(string s, StringBuilder col, List<string> row)
{
int i = 0;
if (col.Length > 0)
{
col.AppendLine(); // continuation
if (!TokenizeQuote(s, ref i, col, row))
{
return false;
}
}
while (i < s.Length)
{
var ch = s[i];
if (ch == ',')
{
row.Add(col.ToString().Trim());
col.Length = 0;
i++;
}
else if (ch == '"')
{
i++;
if (!TokenizeQuote(s, ref i, col, row))
{
return false;
}
}
else
{
col.Append(ch);
i++;
}
}
if (col.Length > 0)
{
row.Add(col.ToString().Trim());
col.Length = 0;
}
return true;
}
public static bool TokenizeQuote(string s, ref int i, StringBuilder col, List<string> row)
{
while (i < s.Length)
{
var ch = s[i];
if (ch == '"')
{
// escape sequence
if (i + 1 < s.Length && s[i + 1] == '"')
{
col.Append('"');
i++;
i++;
continue;
}
i++;
return true;
}
else
{
col.Append(ch);
i++;
}
}
return false;
}
}
这是我的KISS实现…
using System;
using System.Collections.Generic;
using System.Text;
class CsvParser
{
public static List<string> Parse(string line)
{
const char escapeChar = '"';
const char splitChar = ',';
bool inEscape = false;
bool priorEscape = false;
List<string> result = new List<string>();
StringBuilder sb = new StringBuilder();
for (int i = 0; i < line.Length; i++)
{
char c = line[i];
switch (c)
{
case escapeChar:
if (!inEscape)
inEscape = true;
else
{
if (!priorEscape)
{
if (i + 1 < line.Length && line[i + 1] == escapeChar)
priorEscape = true;
else
inEscape = false;
}
else
{
sb.Append(c);
priorEscape = false;
}
}
break;
case splitChar:
if (inEscape) //if in escape
sb.Append(c);
else
{
result.Add(sb.ToString());
sb.Length = 0;
}
break;
default:
sb.Append(c);
break;
}
}
if (sb.Length > 0)
result.Add(sb.ToString());
return result;
}
}
对于较小的CSV输入数据,LINQ是完全足够的。 以以下CSV文件内容为例:
schema_name、描述utype “IX_HE”、“高能量数据”,“x” “III_spectro”、“Spectrosopic数据”、“d” “VI_misc”、“杂”、“f” “vcds1”,“目录只在cd上提供”,“d” “J_other”,“其他期刊发表的文章”,“b”
当我们将整个内容读入一个名为data的字符串时,则
using System;
using System.IO;
using System.Linq;
var data = File.ReadAllText(Path2CSV);
// helper split characters
var newline = Environment.NewLine.ToCharArray();
var comma = ",".ToCharArray();
var quote = "\"".ToCharArray();
// split input string data to lines
var lines = data.Split(newline);
// first line is header, take the header fields
foreach (var col in lines.First().Split(comma)) {
// do something with "col"
}
// we skip the first line, all the rest are real data lines/fields
foreach (var line in lines.Skip(1)) {
// first we split the data line by comma character
// next we remove double qoutes from each splitted element using Trim()
// finally we make an array
var fields = line.Split(comma)
.Select(_ => { _ = _.Trim(quote); return _; })
.ToArray();
// do something with the "fields" array
}
我知道有点晚了,但刚刚找到了Microsoft.VisualBasic.FileIO库,其中有TextFieldParser类来处理csv文件。