我想了很久了。就像题目说的,哪个更快,是实际函数还是简单地取1 / 2次幂?

更新

这不是一个过早优化的问题。这只是一个底层代码如何实际工作的问题。Python代码的工作原理是什么?

我给Guido van Rossum发了一封邮件,因为我真的很想知道这些方法的区别。

我的电子邮件:

在Python中至少有3种方法来求平方根:math。返回值, '**'运算符和pow(x,.5)。我只是好奇它们之间的区别 每一个的实现。说到效率 是更好吗?

他的回答:

Pow和**是等价的;数学。根号方根不适用于复数, 并链接到C的sqrt()函数。至于哪一个是 快点,我不知道……


当前回答

不管怎样(见吉姆的回答)。在我的机器上,运行python 2.5:

PS C:\> python -m timeit -n 100000 10000**.5
100000 loops, best of 3: 0.0543 usec per loop
PS C:\> python -m timeit -n 100000 -s "import math" math.sqrt(10000)
100000 loops, best of 3: 0.162 usec per loop
PS C:\> python -m timeit -n 100000 -s "from math import sqrt" sqrt(10000)
100000 loops, best of 3: 0.0541 usec per loop

其他回答

很可能是math.sqrt(x),因为它针对平方根进行了优化。

基准测试将为您提供您正在寻找的答案。

如果您进入math.py并将函数“sqrt”复制到您的程序中,则会更快。程序找到math.py,然后打开它,找到要找的函数,然后将其带回程序,这需要时间。如果该函数即使使用“查找”步骤也更快,那么函数本身必须非常快。可能会让你的时间缩短一半。总而言之:

转到math.py 找到函数“√” 复制它 将函数粘贴到程序中作为根号查找器。 它的时间。

在这些微观基准测试中,数学。SQRT会慢一些,因为在数学名称空间中查找SQRT所花费的时间很少。你可以用

 from math import sqrt

即使这样,在timeit中运行一些变化,显示x**的轻微(4-5%)性能优势。5

有趣的是,做

 import math
 sqrt = math.sqrt

进一步加速,速度差异在1%以内,几乎没有统计学意义。


我将重复Kibbee,并说这可能是一个不成熟的优化。

使用Claudiu的代码,在我的机器上甚至有“from math import√”x**。5更快,但使用psyco.full() sqrt(x)要快得多,至少快200%

你到底做了多少次平方根?你正在尝试用Python编写一些3D图形引擎吗?如果不是,那么为什么要使用晦涩的代码而不是易于阅读的代码呢?在我能预见的任何应用中,时间差都比任何人能注意到的要小。我真的不想放下你的问题,但看起来你在不成熟的优化上走得有点太远了。