我想了很久了。就像题目说的,哪个更快,是实际函数还是简单地取1 / 2次幂?

更新

这不是一个过早优化的问题。这只是一个底层代码如何实际工作的问题。Python代码的工作原理是什么?

我给Guido van Rossum发了一封邮件,因为我真的很想知道这些方法的区别。

我的电子邮件:

在Python中至少有3种方法来求平方根:math。返回值, '**'运算符和pow(x,.5)。我只是好奇它们之间的区别 每一个的实现。说到效率 是更好吗?

他的回答:

Pow和**是等价的;数学。根号方根不适用于复数, 并链接到C的sqrt()函数。至于哪一个是 快点,我不知道……


当前回答

如果您进入math.py并将函数“sqrt”复制到您的程序中,则会更快。程序找到math.py,然后打开它,找到要找的函数,然后将其带回程序,这需要时间。如果该函数即使使用“查找”步骤也更快,那么函数本身必须非常快。可能会让你的时间缩短一半。总而言之:

转到math.py 找到函数“√” 复制它 将函数粘贴到程序中作为根号查找器。 它的时间。

其他回答

使用Claudiu的代码,在我的机器上甚至有“from math import√”x**。5更快,但使用psyco.full() sqrt(x)要快得多,至少快200%

你好!我刚刚创建了一个堆栈交换配置文件来参与这次对话! 我所做的事情可能看起来微不足道,但在评判之前请先听我说完:

实验条件:

离线(没有internet编译器问题) 保持系统状态尽可能稳定 在一次尝试中测试所有3个功能

对于原问题中陈述的每个函数,我运行了3个循环,每个循环5个迭代。我在每个循环中计算了从0到10^8的整数的平方根。

以下是调查结果: 时间: √(x) < x**0.5 < pow(x, 0.5)

注:以两位数的秒差,超过10^8的非负 整数。

输出截图: 输出

我的结论是:

我觉得Guido的邮件很好地证明了这些时间。 考虑以下语句:

"math.sqrt()链接到C并且不接受复数" **和pow()是等价的

因此,我们可以暗示**和pow()都有一定的开销成本,因为它们都必须检查传递的输入是否为复数,即使我们传递的是整数。此外,复数是Python内置的,使用Python编写Python代码是计算机上的任务。

值得注意的是,math.sqrt()的工作速度相对较快,因为它既不需要检查复数参数的麻烦,也因为它直接与C语言函数连接,C语言函数被证明比一般的Python快一点。

如果你对这个结论的看法与我不同,请告诉我!

代码:

import time
import math
print("x**0.5 : ")
for _ in range(5):
    start = time.time()
    for i in range(int(1e8)):
        i**0.5
    end = time.time()
    print(end-start)
print("math.sqrt(x) : ")
for _ in range(5):
    start = time.time()
    for i in range(int(1e8)):
        math.sqrt(i)
    end = time.time()
    print(end-start)
print("pow(x,0.5) : ")
for _ in range(5):
    start = time.time()
    for i in range(int(1e8)):
        pow(i,0.5)
    end = time.time()
    print(end-start)

在这些微观基准测试中,数学。SQRT会慢一些,因为在数学名称空间中查找SQRT所花费的时间很少。你可以用

 from math import sqrt

即使这样,在timeit中运行一些变化,显示x**的轻微(4-5%)性能优势。5

有趣的是,做

 import math
 sqrt = math.sqrt

进一步加速,速度差异在1%以内,几乎没有统计学意义。


我将重复Kibbee,并说这可能是一个不成熟的优化。

你到底做了多少次平方根?你正在尝试用Python编写一些3D图形引擎吗?如果不是,那么为什么要使用晦涩的代码而不是易于阅读的代码呢?在我能预见的任何应用中,时间差都比任何人能注意到的要小。我真的不想放下你的问题,但看起来你在不成熟的优化上走得有点太远了。

克劳狄的结果和我的不一样。我在一台旧的P4 2.4Ghz机器上使用Ubuntu上的Python 2.6…以下是我的结果:

>>> timeit1()
Took 0.564911 seconds
>>> timeit2()
Took 0.403087 seconds
>>> timeit1()
Took 0.604713 seconds
>>> timeit2()
Took 0.387749 seconds
>>> timeit1()
Took 0.587829 seconds
>>> timeit2()
Took 0.379381 seconds

对我来说,SQRT一直都更快……甚至Codepad.org现在似乎也同意,在本地环境下,根号rt更快(http://codepad.org/6trzcM3j)。Codepad目前运行的是Python 2.5。也许克劳狄第一次回答的时候,他们使用的是2.4或更老的版本?

事实上,即使使用math.sqrt(i)来代替arg(i),我仍然可以得到更好的sqrt。在本例中,timeit2()在我的机器上花费了0.53到0.55秒,这仍然比timeit1的0.56-0.60秒要好。

我会说,在现代Python中,使用数学。一定要把它带入本地环境,或者用somevar=math。或者从数学导入根号。