我想了很久了。就像题目说的,哪个更快,是实际函数还是简单地取1 / 2次幂?

更新

这不是一个过早优化的问题。这只是一个底层代码如何实际工作的问题。Python代码的工作原理是什么?

我给Guido van Rossum发了一封邮件,因为我真的很想知道这些方法的区别。

我的电子邮件:

在Python中至少有3种方法来求平方根:math。返回值, '**'运算符和pow(x,.5)。我只是好奇它们之间的区别 每一个的实现。说到效率 是更好吗?

他的回答:

Pow和**是等价的;数学。根号方根不适用于复数, 并链接到C的sqrt()函数。至于哪一个是 快点,我不知道……


当前回答

你好!我刚刚创建了一个堆栈交换配置文件来参与这次对话! 我所做的事情可能看起来微不足道,但在评判之前请先听我说完:

实验条件:

离线(没有internet编译器问题) 保持系统状态尽可能稳定 在一次尝试中测试所有3个功能

对于原问题中陈述的每个函数,我运行了3个循环,每个循环5个迭代。我在每个循环中计算了从0到10^8的整数的平方根。

以下是调查结果: 时间: √(x) < x**0.5 < pow(x, 0.5)

注:以两位数的秒差,超过10^8的非负 整数。

输出截图: 输出

我的结论是:

我觉得Guido的邮件很好地证明了这些时间。 考虑以下语句:

"math.sqrt()链接到C并且不接受复数" **和pow()是等价的

因此,我们可以暗示**和pow()都有一定的开销成本,因为它们都必须检查传递的输入是否为复数,即使我们传递的是整数。此外,复数是Python内置的,使用Python编写Python代码是计算机上的任务。

值得注意的是,math.sqrt()的工作速度相对较快,因为它既不需要检查复数参数的麻烦,也因为它直接与C语言函数连接,C语言函数被证明比一般的Python快一点。

如果你对这个结论的看法与我不同,请告诉我!

代码:

import time
import math
print("x**0.5 : ")
for _ in range(5):
    start = time.time()
    for i in range(int(1e8)):
        i**0.5
    end = time.time()
    print(end-start)
print("math.sqrt(x) : ")
for _ in range(5):
    start = time.time()
    for i in range(int(1e8)):
        math.sqrt(i)
    end = time.time()
    print(end-start)
print("pow(x,0.5) : ")
for _ in range(5):
    start = time.time()
    for i in range(int(1e8)):
        pow(i,0.5)
    end = time.time()
    print(end-start)

其他回答

优化的第一条规则:不要这么做 第二条规则:先别这么做

以下是一些计时(Python 2.5.2, Windows):

$ python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
1000000 loops, best of 3: 0.445 usec per loop

$ python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
1000000 loops, best of 3: 0.574 usec per loop

$ python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
1000000 loops, best of 3: 0.727 usec per loop

这个测试表明x**。5比√(x)略快。

对于Python 3.0,结果正好相反:

$ \Python30\python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
1000000 loops, best of 3: 0.803 usec per loop

$ \Python30\python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
1000000 loops, best of 3: 0.695 usec per loop

$ \Python30\python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
1000000 loops, best of 3: 0.761 usec per loop

Math.sqrt (x)总是比x**快。5在另一台机器上(Ubuntu, Python 2.6和3.1):

$ python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
10000000 loops, best of 3: 0.173 usec per loop
$ python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
10000000 loops, best of 3: 0.115 usec per loop
$ python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
10000000 loops, best of 3: 0.158 usec per loop
$ python3.1 -mtimeit -s"from math import sqrt; x = 123" "x**.5"
10000000 loops, best of 3: 0.194 usec per loop
$ python3.1 -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
10000000 loops, best of 3: 0.123 usec per loop
$ python3.1 -mtimeit -s"import math; x = 123" "math.sqrt(x)"
10000000 loops, best of 3: 0.157 usec per loop

在python 2.6中,(float).__pow__()函数使用C pow()函数,math.sqrt()函数使用C sqrt()函数。

在glibc编译器中,pow(x,y)的实现相当复杂,并且针对各种例外情况进行了很好的优化。例如,调用C pow(x,0.5)只调用sqrt()函数。

**或数学使用速度的差异。sqrt是由围绕C函数的包装器引起的,速度很大程度上取决于系统上使用的优化标志/C编译器。

编辑:

这是克劳狄算法在我机器上的结果。我得到了不同的结果:

zoltan@host:~$ python2.4 p.py 
Took 0.173994 seconds
Took 0.158991 seconds
zoltan@host:~$ python2.5 p.py 
Took 0.182321 seconds
Took 0.155394 seconds
zoltan@host:~$ python2.6 p.py 
Took 0.166766 seconds
Took 0.097018 seconds

克劳狄的结果和我的不一样。我在一台旧的P4 2.4Ghz机器上使用Ubuntu上的Python 2.6…以下是我的结果:

>>> timeit1()
Took 0.564911 seconds
>>> timeit2()
Took 0.403087 seconds
>>> timeit1()
Took 0.604713 seconds
>>> timeit2()
Took 0.387749 seconds
>>> timeit1()
Took 0.587829 seconds
>>> timeit2()
Took 0.379381 seconds

对我来说,SQRT一直都更快……甚至Codepad.org现在似乎也同意,在本地环境下,根号rt更快(http://codepad.org/6trzcM3j)。Codepad目前运行的是Python 2.5。也许克劳狄第一次回答的时候,他们使用的是2.4或更老的版本?

事实上,即使使用math.sqrt(i)来代替arg(i),我仍然可以得到更好的sqrt。在本例中,timeit2()在我的机器上花费了0.53到0.55秒,这仍然比timeit1的0.56-0.60秒要好。

我会说,在现代Python中,使用数学。一定要把它带入本地环境,或者用somevar=math。或者从数学导入根号。

Math.sqrt (x)比x**0.5快得多。

import math
N = 1000000
%%timeit
for i in range(N):
    z=i**.5

10个循环,最好的3:156毫秒每循环

%%timeit
for i in range(N):
    z=math.sqrt(i)

10个循环,最好的3:91.1毫秒每循环

使用Python 3.6.9(笔记本)。

我最近解决的SQRMINSUM问题需要在一个大型数据集上重复计算平方根。在我做其他优化之前,我历史上最老的2个提交,唯一的区别是用sqrt()替换**0.5,从而将PyPy中的运行时从3.74秒减少到0.51秒。这几乎是克劳狄测量的400%的巨大改进的两倍。