我想了很久了。就像题目说的,哪个更快,是实际函数还是简单地取1 / 2次幂?

更新

这不是一个过早优化的问题。这只是一个底层代码如何实际工作的问题。Python代码的工作原理是什么?

我给Guido van Rossum发了一封邮件,因为我真的很想知道这些方法的区别。

我的电子邮件:

在Python中至少有3种方法来求平方根:math。返回值, '**'运算符和pow(x,.5)。我只是好奇它们之间的区别 每一个的实现。说到效率 是更好吗?

他的回答:

Pow和**是等价的;数学。根号方根不适用于复数, 并链接到C的sqrt()函数。至于哪一个是 快点,我不知道……


当前回答

克劳狄的结果和我的不一样。我在一台旧的P4 2.4Ghz机器上使用Ubuntu上的Python 2.6…以下是我的结果:

>>> timeit1()
Took 0.564911 seconds
>>> timeit2()
Took 0.403087 seconds
>>> timeit1()
Took 0.604713 seconds
>>> timeit2()
Took 0.387749 seconds
>>> timeit1()
Took 0.587829 seconds
>>> timeit2()
Took 0.379381 seconds

对我来说,SQRT一直都更快……甚至Codepad.org现在似乎也同意,在本地环境下,根号rt更快(http://codepad.org/6trzcM3j)。Codepad目前运行的是Python 2.5。也许克劳狄第一次回答的时候,他们使用的是2.4或更老的版本?

事实上,即使使用math.sqrt(i)来代替arg(i),我仍然可以得到更好的sqrt。在本例中,timeit2()在我的机器上花费了0.53到0.55秒,这仍然比timeit1的0.56-0.60秒要好。

我会说,在现代Python中,使用数学。一定要把它带入本地环境,或者用somevar=math。或者从数学导入根号。

其他回答

很可能是math.sqrt(x),因为它针对平方根进行了优化。

基准测试将为您提供您正在寻找的答案。

有人评论《雷神之锤3》中的“快速牛顿-拉弗森平方根”……我用ctypes实现了它,但与本机版本相比,它非常慢。我将尝试一些优化和替代实现。

from ctypes import c_float, c_long, byref, POINTER, cast

def sqrt(num):
 xhalf = 0.5*num
 x = c_float(num)
 i = cast(byref(x), POINTER(c_long)).contents.value
 i = c_long(0x5f375a86 - (i>>1))
 x = cast(byref(i), POINTER(c_float)).contents.value

 x = x*(1.5-xhalf*x*x)
 x = x*(1.5-xhalf*x*x)
 return x * num

这是另一个使用struct的方法,比ctypes版本快3.6倍,但仍然是C的1/10。

from struct import pack, unpack

def sqrt_struct(num):
 xhalf = 0.5*num
 i = unpack('L', pack('f', 28.0))[0]
 i = 0x5f375a86 - (i>>1)
 x = unpack('f', pack('L', i))[0]

 x = x*(1.5-xhalf*x*x)
 x = x*(1.5-xhalf*x*x)
 return x * num

优化的第一条规则:不要这么做 第二条规则:先别这么做

以下是一些计时(Python 2.5.2, Windows):

$ python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
1000000 loops, best of 3: 0.445 usec per loop

$ python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
1000000 loops, best of 3: 0.574 usec per loop

$ python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
1000000 loops, best of 3: 0.727 usec per loop

这个测试表明x**。5比√(x)略快。

对于Python 3.0,结果正好相反:

$ \Python30\python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
1000000 loops, best of 3: 0.803 usec per loop

$ \Python30\python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
1000000 loops, best of 3: 0.695 usec per loop

$ \Python30\python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
1000000 loops, best of 3: 0.761 usec per loop

Math.sqrt (x)总是比x**快。5在另一台机器上(Ubuntu, Python 2.6和3.1):

$ python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
10000000 loops, best of 3: 0.173 usec per loop
$ python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
10000000 loops, best of 3: 0.115 usec per loop
$ python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
10000000 loops, best of 3: 0.158 usec per loop
$ python3.1 -mtimeit -s"from math import sqrt; x = 123" "x**.5"
10000000 loops, best of 3: 0.194 usec per loop
$ python3.1 -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
10000000 loops, best of 3: 0.123 usec per loop
$ python3.1 -mtimeit -s"import math; x = 123" "math.sqrt(x)"
10000000 loops, best of 3: 0.157 usec per loop

python要优化的是可读性。为此,我认为显式地使用平方根函数是最好的。话虽如此,我们还是来研究一下性能。

我为Python 3更新了Claudiu的代码,并使其不可能优化计算(未来一个优秀的Python编译器可能会做的事情):

from sys import version
from time import time
from math import sqrt, pi, e

print(version)

N = 1_000_000

def timeit1():
  z = N * e
  s = time()
  for n in range(N):
    z += (n * pi) ** .5 - z ** .5
  print (f"Took {(time() - s):.4f} seconds to calculate {z}")

def timeit2():
  z = N * e
  s = time()
  for n in range(N):
    z += sqrt(n * pi) - sqrt(z)
  print (f"Took {(time() - s):.4f} seconds to calculate {z}")

def timeit3(arg=sqrt):
  z = N * e
  s = time()
  for n in range(N):
    z += arg(n * pi) - arg(z)
  print (f"Took {(time() - s):.4f} seconds to calculate {z}")

timeit1()
timeit2()
timeit3()

结果不同,但一个示例输出是:

3.6.6 (default, Jul 19 2018, 14:25:17) 
[GCC 8.1.1 20180712 (Red Hat 8.1.1-5)]
Took 0.3747 seconds to calculate 3130485.5713865166
Took 0.2899 seconds to calculate 3130485.5713865166
Took 0.2635 seconds to calculate 3130485.5713865166

还有一个最近的输出:

3.7.4 (default, Jul  9 2019, 16:48:28) 
[GCC 8.3.1 20190223 (Red Hat 8.3.1-2)]
Took 0.2583 seconds to calculate 3130485.5713865166
Took 0.1612 seconds to calculate 3130485.5713865166
Took 0.1563 seconds to calculate 3130485.5713865166

你自己试试。

克劳狄的结果和我的不一样。我在一台旧的P4 2.4Ghz机器上使用Ubuntu上的Python 2.6…以下是我的结果:

>>> timeit1()
Took 0.564911 seconds
>>> timeit2()
Took 0.403087 seconds
>>> timeit1()
Took 0.604713 seconds
>>> timeit2()
Took 0.387749 seconds
>>> timeit1()
Took 0.587829 seconds
>>> timeit2()
Took 0.379381 seconds

对我来说,SQRT一直都更快……甚至Codepad.org现在似乎也同意,在本地环境下,根号rt更快(http://codepad.org/6trzcM3j)。Codepad目前运行的是Python 2.5。也许克劳狄第一次回答的时候,他们使用的是2.4或更老的版本?

事实上,即使使用math.sqrt(i)来代替arg(i),我仍然可以得到更好的sqrt。在本例中,timeit2()在我的机器上花费了0.53到0.55秒,这仍然比timeit1的0.56-0.60秒要好。

我会说,在现代Python中,使用数学。一定要把它带入本地环境,或者用somevar=math。或者从数学导入根号。