我想了很久了。就像题目说的,哪个更快,是实际函数还是简单地取1 / 2次幂?
更新
这不是一个过早优化的问题。这只是一个底层代码如何实际工作的问题。Python代码的工作原理是什么?
我给Guido van Rossum发了一封邮件,因为我真的很想知道这些方法的区别。
我的电子邮件:
在Python中至少有3种方法来求平方根:math。返回值,
'**'运算符和pow(x,.5)。我只是好奇它们之间的区别
每一个的实现。说到效率
是更好吗?
他的回答:
Pow和**是等价的;数学。根号方根不适用于复数,
并链接到C的sqrt()函数。至于哪一个是
快点,我不知道……
克劳狄的结果和我的不一样。我在一台旧的P4 2.4Ghz机器上使用Ubuntu上的Python 2.6…以下是我的结果:
>>> timeit1()
Took 0.564911 seconds
>>> timeit2()
Took 0.403087 seconds
>>> timeit1()
Took 0.604713 seconds
>>> timeit2()
Took 0.387749 seconds
>>> timeit1()
Took 0.587829 seconds
>>> timeit2()
Took 0.379381 seconds
对我来说,SQRT一直都更快……甚至Codepad.org现在似乎也同意,在本地环境下,根号rt更快(http://codepad.org/6trzcM3j)。Codepad目前运行的是Python 2.5。也许克劳狄第一次回答的时候,他们使用的是2.4或更老的版本?
事实上,即使使用math.sqrt(i)来代替arg(i),我仍然可以得到更好的sqrt。在本例中,timeit2()在我的机器上花费了0.53到0.55秒,这仍然比timeit1的0.56-0.60秒要好。
我会说,在现代Python中,使用数学。一定要把它带入本地环境,或者用somevar=math。或者从数学导入根号。
有人评论《雷神之锤3》中的“快速牛顿-拉弗森平方根”……我用ctypes实现了它,但与本机版本相比,它非常慢。我将尝试一些优化和替代实现。
from ctypes import c_float, c_long, byref, POINTER, cast
def sqrt(num):
xhalf = 0.5*num
x = c_float(num)
i = cast(byref(x), POINTER(c_long)).contents.value
i = c_long(0x5f375a86 - (i>>1))
x = cast(byref(i), POINTER(c_float)).contents.value
x = x*(1.5-xhalf*x*x)
x = x*(1.5-xhalf*x*x)
return x * num
这是另一个使用struct的方法,比ctypes版本快3.6倍,但仍然是C的1/10。
from struct import pack, unpack
def sqrt_struct(num):
xhalf = 0.5*num
i = unpack('L', pack('f', 28.0))[0]
i = 0x5f375a86 - (i>>1)
x = unpack('f', pack('L', i))[0]
x = x*(1.5-xhalf*x*x)
x = x*(1.5-xhalf*x*x)
return x * num
在python 2.6中,(float).__pow__()函数使用C pow()函数,math.sqrt()函数使用C sqrt()函数。
在glibc编译器中,pow(x,y)的实现相当复杂,并且针对各种例外情况进行了很好的优化。例如,调用C pow(x,0.5)只调用sqrt()函数。
**或数学使用速度的差异。sqrt是由围绕C函数的包装器引起的,速度很大程度上取决于系统上使用的优化标志/C编译器。
编辑:
这是克劳狄算法在我机器上的结果。我得到了不同的结果:
zoltan@host:~$ python2.4 p.py
Took 0.173994 seconds
Took 0.158991 seconds
zoltan@host:~$ python2.5 p.py
Took 0.182321 seconds
Took 0.155394 seconds
zoltan@host:~$ python2.6 p.py
Took 0.166766 seconds
Took 0.097018 seconds
优化的第一条规则:不要这么做
第二条规则:先别这么做
以下是一些计时(Python 2.5.2, Windows):
$ python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
1000000 loops, best of 3: 0.445 usec per loop
$ python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
1000000 loops, best of 3: 0.574 usec per loop
$ python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
1000000 loops, best of 3: 0.727 usec per loop
这个测试表明x**。5比√(x)略快。
对于Python 3.0,结果正好相反:
$ \Python30\python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
1000000 loops, best of 3: 0.803 usec per loop
$ \Python30\python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
1000000 loops, best of 3: 0.695 usec per loop
$ \Python30\python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
1000000 loops, best of 3: 0.761 usec per loop
Math.sqrt (x)总是比x**快。5在另一台机器上(Ubuntu, Python 2.6和3.1):
$ python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
10000000 loops, best of 3: 0.173 usec per loop
$ python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
10000000 loops, best of 3: 0.115 usec per loop
$ python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
10000000 loops, best of 3: 0.158 usec per loop
$ python3.1 -mtimeit -s"from math import sqrt; x = 123" "x**.5"
10000000 loops, best of 3: 0.194 usec per loop
$ python3.1 -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
10000000 loops, best of 3: 0.123 usec per loop
$ python3.1 -mtimeit -s"import math; x = 123" "math.sqrt(x)"
10000000 loops, best of 3: 0.157 usec per loop