我想了很久了。就像题目说的,哪个更快,是实际函数还是简单地取1 / 2次幂?

更新

这不是一个过早优化的问题。这只是一个底层代码如何实际工作的问题。Python代码的工作原理是什么?

我给Guido van Rossum发了一封邮件,因为我真的很想知道这些方法的区别。

我的电子邮件:

在Python中至少有3种方法来求平方根:math。返回值, '**'运算符和pow(x,.5)。我只是好奇它们之间的区别 每一个的实现。说到效率 是更好吗?

他的回答:

Pow和**是等价的;数学。根号方根不适用于复数, 并链接到C的sqrt()函数。至于哪一个是 快点,我不知道……


当前回答

克劳狄的结果和我的不一样。我在一台旧的P4 2.4Ghz机器上使用Ubuntu上的Python 2.6…以下是我的结果:

>>> timeit1()
Took 0.564911 seconds
>>> timeit2()
Took 0.403087 seconds
>>> timeit1()
Took 0.604713 seconds
>>> timeit2()
Took 0.387749 seconds
>>> timeit1()
Took 0.587829 seconds
>>> timeit2()
Took 0.379381 seconds

对我来说,SQRT一直都更快……甚至Codepad.org现在似乎也同意,在本地环境下,根号rt更快(http://codepad.org/6trzcM3j)。Codepad目前运行的是Python 2.5。也许克劳狄第一次回答的时候,他们使用的是2.4或更老的版本?

事实上,即使使用math.sqrt(i)来代替arg(i),我仍然可以得到更好的sqrt。在本例中,timeit2()在我的机器上花费了0.53到0.55秒,这仍然比timeit1的0.56-0.60秒要好。

我会说,在现代Python中,使用数学。一定要把它带入本地环境,或者用somevar=math。或者从数学导入根号。

其他回答

在这些微观基准测试中,数学。SQRT会慢一些,因为在数学名称空间中查找SQRT所花费的时间很少。你可以用

 from math import sqrt

即使这样,在timeit中运行一些变化,显示x**的轻微(4-5%)性能优势。5

有趣的是,做

 import math
 sqrt = math.sqrt

进一步加速,速度差异在1%以内,几乎没有统计学意义。


我将重复Kibbee,并说这可能是一个不成熟的优化。

python要优化的是可读性。为此,我认为显式地使用平方根函数是最好的。话虽如此,我们还是来研究一下性能。

我为Python 3更新了Claudiu的代码,并使其不可能优化计算(未来一个优秀的Python编译器可能会做的事情):

from sys import version
from time import time
from math import sqrt, pi, e

print(version)

N = 1_000_000

def timeit1():
  z = N * e
  s = time()
  for n in range(N):
    z += (n * pi) ** .5 - z ** .5
  print (f"Took {(time() - s):.4f} seconds to calculate {z}")

def timeit2():
  z = N * e
  s = time()
  for n in range(N):
    z += sqrt(n * pi) - sqrt(z)
  print (f"Took {(time() - s):.4f} seconds to calculate {z}")

def timeit3(arg=sqrt):
  z = N * e
  s = time()
  for n in range(N):
    z += arg(n * pi) - arg(z)
  print (f"Took {(time() - s):.4f} seconds to calculate {z}")

timeit1()
timeit2()
timeit3()

结果不同,但一个示例输出是:

3.6.6 (default, Jul 19 2018, 14:25:17) 
[GCC 8.1.1 20180712 (Red Hat 8.1.1-5)]
Took 0.3747 seconds to calculate 3130485.5713865166
Took 0.2899 seconds to calculate 3130485.5713865166
Took 0.2635 seconds to calculate 3130485.5713865166

还有一个最近的输出:

3.7.4 (default, Jul  9 2019, 16:48:28) 
[GCC 8.3.1 20190223 (Red Hat 8.3.1-2)]
Took 0.2583 seconds to calculate 3130485.5713865166
Took 0.1612 seconds to calculate 3130485.5713865166
Took 0.1563 seconds to calculate 3130485.5713865166

你自己试试。

Math.sqrt (x)比x**0.5快得多。

import math
N = 1000000
%%timeit
for i in range(N):
    z=i**.5

10个循环,最好的3:156毫秒每循环

%%timeit
for i in range(N):
    z=math.sqrt(i)

10个循环,最好的3:91.1毫秒每循环

使用Python 3.6.9(笔记本)。

我最近解决的SQRMINSUM问题需要在一个大型数据集上重复计算平方根。在我做其他优化之前,我历史上最老的2个提交,唯一的区别是用sqrt()替换**0.5,从而将PyPy中的运行时从3.74秒减少到0.51秒。这几乎是克劳狄测量的400%的巨大改进的两倍。

不管怎样(见吉姆的回答)。在我的机器上,运行python 2.5:

PS C:\> python -m timeit -n 100000 10000**.5
100000 loops, best of 3: 0.0543 usec per loop
PS C:\> python -m timeit -n 100000 -s "import math" math.sqrt(10000)
100000 loops, best of 3: 0.162 usec per loop
PS C:\> python -m timeit -n 100000 -s "from math import sqrt" sqrt(10000)
100000 loops, best of 3: 0.0541 usec per loop