有几个关于浮点表示法的问题被提交给了SO。例如,十进制数0.1没有精确的二进制表示,因此使用==操作符将其与另一个浮点数进行比较是危险的。我理解浮点表示法背后的原理。

我不明白的是,为什么从数学的角度来看,小数点右边的数字比左边的数字更“特殊”?

例如,数字61.0具有精确的二进制表示,因为任何数字的整数部分总是精确的。但6.10这个数字并不准确。我所做的只是把小数点移了一位突然间我就从精确乌托邦变成了不精确镇。从数学上讲,这两个数字之间不应该有本质差别——它们只是数字。

相比之下,如果我把小数点向另一个方向移动一位,得到数字610,我仍然在Exactopia。我可以继续往这个方向(6100,610000000,610000000000000)它们仍然是完全,完全,完全的。但是一旦小数点越过某个阈值,这些数字就不再精确了。

这是怎么呢

编辑:为了澄清,我不想讨论诸如IEEE之类的行业标准表示,而是坚持我所相信的数学上的“纯粹”方式。以10为基数,位置值为:

... 1000  100   10    1   1/10  1/100 ...

在二进制中,它们将是:

... 8    4    2    1    1/2  1/4  1/8 ...

这些数字也没有任意的限制。位置向左和向右无限增加。


当前回答

我不想重复其他20个答案的总结,所以我只简单地回答:

答案在你的内容中:

为什么以两为基数的数字不能精确地表示一定的比率?

出于同样的原因,小数不足以表示某些比率,即分母中包含除2或5之外的素数因子的不可约分数,至少在其小数展开的尾数中总是有一个不确定的字符串。

为什么十进制数不能精确地用二进制表示?

This question at face value is based on a misconception regarding values themselves. No number system is sufficient to represent any quantity or ratio in a manner that the thing itself tells you that it is both a quantity, and at the same time also gives the interpretation in and of itself about the intrinsic value of the representation. As such, all quantitative representations, and models in general, are symbolic and can only be understood a posteriori, namely, after one has been taught how to read and interpret these numbers.

由于模型是主观的东西,在反映现实的范围内是正确的,我们不需要严格地将二进制字符串解释为2的负幂和正幂的和。相反,我们可以观察到,我们可以创建一组任意的符号,这些符号以2为基底或任何其他基底来精确地表示任何数字或比例。只要考虑一下,我们可以用一个词甚至一个符号来指代无穷大,而不需要“显示无穷大”本身。

As an example, I am designing a binary encoding for mixed numbers so that I can have more precision and accuracy than an IEEE 754 float. At the time of writing this, the idea is to have a sign bit, a reciprocal bit, a certain number of bits for a scalar to determine how much to "magnify" the fractional portion, and then the remaining bits are divided evenly between the integer portion of a mixed number, and the latter a fixed-point number which, if the reciprocal bit is set, should be interpreted as one divided by that number. This has the benefit of allowing me to represent numbers with infinite decimal expansions by using their reciprocals which do have terminating decimal expansions, or alternatively, as a fraction directly, potentially as an approximation, depending on my needs.

其他回答

这是个好问题。

你所有的问题都是基于“我们如何表示一个数字?”

所有的数字都可以用十进制表示,也可以用二进制(2的补码)表示。所有人!!

但有些(大多数)需要无穷多个元素(二进制位置为“0”或“1”,十进制表示为“0”,“1”到“9”)。

比如十进制表示的1/3(1/3 = 0.3333333…<-包含无限个“3”)

比如二进制中的0.1 (0.1 = 0.00011001100110011....<-带有无限个“0011”)

一切都在这个概念中。由于您的计算机只能考虑有限的数字集(十进制或二进制),只有一些数字可以准确地表示在您的计算机…

乔恩说过,3是质数,不是10的因数,所以1/3不能用以10为底的有限个数来表示。

即使使用任意精度的算术,以2为基数的编号位置系统也不能完全描述6.1,尽管它可以表示61。

对于6.1,我们必须使用另一种表示法(比如十进制表示法,或者允许以2为底或以10为底表示浮点值的IEEE 854)。

一个简单的答案是:计算机没有无限的内存来存储分数(在以科学记数法的形式表示十进制数之后)。根据IEEE 754双精度浮点数标准,我们只有53位的限制来存储分数。 欲了解更多信息:http://mathcenter.oxford.emory.edu/site/cs170/ieee754/

在等式中

2^x = y ;  
x = log(y) / log(2)

因此,我想知道我们是否可以有一个二进制的对数制,

 2^1, 2^0, 2^(log(1/2) / log(2)), 2^(log(1/4) / log(2)), 2^(log(1/8) / log(2)),2^(log(1/16) / log(2)) ........

这也许能解决问题,所以如果你想把32.41写成二进制,那就是

2^5 + 2^(log(0.4) / log(2)) + 2^(log(0.01) / log(2))

Or

2^5 + 2^(log(0.41) / log(2))

如果你有足够的空间,十进制数可以精确地表示出来——只是不能用浮点二进制数表示。如果您使用浮点小数点类型(例如System。. net中的十进制),那么许多不能用二进制浮点数精确表示的值都可以被精确表示。

让我们从另一个角度来看——以10为基数,你可能会觉得舒服,你不能准确地表示1/3。这是0.3333333……(重复)。不能将0.1表示为二进制浮点数的原因与此完全相同。你可以表示3 9和27,但不是1/3 1/9或1/27。

问题是3是质数,不是10的因数。当你想将一个数乘以3时,这不是一个问题:你总是可以乘以一个整数而不会遇到问题。但是当你除以一个质数而不是底数的因数时,你就会遇到麻烦(如果你试图用1除以这个数,你就会遇到麻烦)。

虽然0.1通常被用作精确十进制数的最简单例子,它不能用二进制浮点数精确表示,但可以说0.2是一个更简单的例子,因为它是1/5,而5是导致十进制和二进制之间存在问题的素数。


边注:处理有限表示的问题:

Some floating decimal point types have a fixed size like System.Decimal others like java.math.BigDecimal are "arbitrarily large" - but they'll hit a limit at some point, whether it's system memory or the theoretical maximum size of an array. This is an entirely separate point to the main one of this answer, however. Even if you had a genuinely arbitrarily large number of bits to play with, you still couldn't represent decimal 0.1 exactly in a floating binary point representation. Compare that with the other way round: given an arbitrary number of decimal digits, you can exactly represent any number which is exactly representable as a floating binary point.

如果你用浮点数做一个足够大的数(它可以做指数),那么小数点前也会不精确。所以我不认为你的问题是完全正确的,因为前提是错误的;移位10并不总是会产生更高的精度,因为在某些情况下,浮点数将不得不使用指数来表示数字的大小,这样也会失去一些精度。