Index()将给出列表中第一个出现的项。是否有一个巧妙的技巧可以返回一个元素列表中的所有索引?
当前回答
获取列表中一个或多个(相同的)项的所有出现情况和位置
使用enumerate(alist),您可以存储第一个元素(n),当元素x等于您所寻找的元素时,它是列表的索引。
>>> alist = ['foo', 'spam', 'egg', 'foo']
>>> foo_indexes = [n for n,x in enumerate(alist) if x=='foo']
>>> foo_indexes
[0, 3]
>>>
让我们把函数命名为findindex
这个函数以项目和列表作为参数,并返回项目在列表中的位置,就像我们前面看到的那样。
def indexlist(item2find, list_or_string):
"Returns all indexes of an item in a list or a string"
return [n for n,item in enumerate(list_or_string) if item==item2find]
print(indexlist("1", "010101010"))
输出
[1, 3, 5, 7]
简单的
for n, i in enumerate([1, 2, 3, 4, 1]):
if i == 1:
print(n)
输出:
0
4
其他回答
使用list.index的解决方案:
def indices(lst, element):
result = []
offset = -1
while True:
try:
offset = lst.index(element, offset+1)
except ValueError:
return result
result.append(offset)
对于大型列表,它比使用enumerate的列表理解要快得多。如果已经有数组,它也比numpy解决方案慢得多,否则转换的成本超过了速度增益(在包含100、1000和10000个元素的整数列表上进行测试)。
注意:根据Chris_Rands的评论,需要注意的是:如果结果足够稀疏,这个解决方案比列表推导式更快,但是如果列表中有很多正在搜索的元素的实例(超过列表的15%,在一个包含1000个整数的列表测试中),列表推导式更快。
您可以创建defaultdict
from collections import defaultdict
d1 = defaultdict(int) # defaults to 0 values for keys
unq = set(lst1) # lst1 = [1, 2, 2, 3, 4, 1, 2, 7]
for each in unq:
d1[each] = lst1.count(each)
else:
print(d1)
在python2中使用filter()。
>>> q = ['Yeehaw', 'Yeehaw', 'Googol', 'B9', 'Googol', 'NSM', 'B9', 'NSM', 'Dont Ask', 'Googol']
>>> filter(lambda i: q[i]=="Googol", range(len(q)))
[2, 4, 9]
创建一个生成器
生成器速度很快,占用的内存很小。它们可以让你灵活地使用结果。
def indices(iter, val):
"""Generator: Returns all indices of val in iter
Raises a ValueError if no val does not occur in iter
Passes on the AttributeError if iter does not have an index method (e.g. is a set)
"""
i = -1
NotFound = False
while not NotFound:
try:
i = iter.index(val, i+1)
except ValueError:
NotFound = True
else:
yield i
if i == -1:
raise ValueError("No occurrences of {v} in {i}".format(v = val, i = iter))
上面的代码可以用来创建一个索引列表:list(indexes (input,value));使用它们作为字典键:dict(索引(输入,值));求和:Sum (indexes (input,value));在for循环中index_ In indexes (input,value):;等……无需创建临时列表/元组或类似的。
在for循环中,当你调用下一个索引时,你将得到它,而不需要等待所有其他索引先计算出来。这意味着:如果出于某种原因跳出循环,就可以节省查找根本不需要的索引所需的时间。
它是如何工作的
在输入iter上调用.index来查找 瓦尔 使用第二个参数.index从该点开始 在最后发现的事件之后 收益率指数 重复操作,直到index引发ValueError
选择版本
我尝试了四种不同的流量控制版本;两个EAFP(使用try - except)和两个TBYL(在while语句中使用逻辑测试):
"WhileTrueBreak": while True: ... except ValueError: break. Surprisingly, this was usually a touch slower than option 2 and (IMV) less readable "WhileErrFalse": Using a bool variable err to identify when a ValueError is raised. This is generally the fastest and more readable than 1 "RemainingSlice": Check whether val is in the remaining part of the input using slicing: while val in iter[i:]. Unsurprisingly, this does not scale well "LastOccurrence": Check first where the last occurrence is, keep going while i < last
1、2和4之间的整体表现差异可以忽略不计,所以这取决于个人风格和偏好。鉴于.index使用ValueError来让你知道它没有找到任何东西,而不是例如返回None, eafp方法似乎适合我。
下面是4个代码变体和timeit(以毫秒为单位)对于不同长度的输入和稀疏匹配的结果
@version("WhileTrueBreak", versions)
def indices2(iter, val):
i = -1
while True:
try:
i = iter.index(val, i+1)
except ValueError:
break
else:
yield i
@version("WhileErrFalse", versions)
def indices5(iter, val):
i = -1
err = False
while not err:
try:
i = iter.index(val, i+1)
except ValueError:
err = True
else:
yield i
@version("RemainingSlice", versions)
def indices1(iter, val):
i = 0
while val in iter[i:]:
i = iter.index(val, i)
yield i
i += 1
@version("LastOccurrence", versions)
def indices4(iter,val):
i = 0
last = len(iter) - tuple(reversed(iter)).index(val)
while i < last:
i = iter.index(val, i)
yield i
i += 1
Length: 100, Ocurrences: 4.0%
{'WhileTrueBreak': 0.0074799987487494946, 'WhileErrFalse': 0.006440002471208572, 'RemainingSlice': 0.01221001148223877, 'LastOccurrence': 0.00801000278443098}
Length: 1000, Ocurrences: 1.2%
{'WhileTrueBreak': 0.03101000329479575, 'WhileErrFalse': 0.0278000021353364, 'RemainingSlice': 0.08278000168502331, 'LastOccurrence': 0.03986000083386898}
Length: 10000, Ocurrences: 2.05%
{'WhileTrueBreak': 0.18062000162899494, 'WhileErrFalse': 0.1810499932616949, 'RemainingSlice': 2.9145700042136014, 'LastOccurrence': 0.2049500006251037}
Length: 100000, Ocurrences: 1.977%
{'WhileTrueBreak': 1.9361200043931603, 'WhileErrFalse': 1.7280600033700466, 'RemainingSlice': 254.4725100044161, 'LastOccurrence': 1.9101499929092824}
Length: 100000, Ocurrences: 9.873%
{'WhileTrueBreak': 2.832529996521771, 'WhileErrFalse': 2.9984100023284554, 'RemainingSlice': 1132.4922299943864, 'LastOccurrence': 2.6660699979402125}
Length: 100000, Ocurrences: 25.058%
{'WhileTrueBreak': 5.119729996658862, 'WhileErrFalse': 5.2082200068980455, 'RemainingSlice': 2443.0577100021765, 'LastOccurrence': 4.75954000139609}
Length: 100000, Ocurrences: 49.698%
{'WhileTrueBreak': 9.372120001353323, 'WhileErrFalse': 8.447749994229525, 'RemainingSlice': 5042.717969999649, 'LastOccurrence': 8.050809998530895}
如果你需要搜索所有元素在某些索引之间的位置,你可以声明它们:
[i for i,x in enumerate([1,2,3,2]) if x==2 & 2<= i <=3] # -> [3]
推荐文章
- 用Python构建最小的插件架构
- model.eval()在pytorch中做什么?
- Tensorflow 2.0:模块“Tensorflow”没有属性“Session”
- 从环境文件中读入环境变量
- 在OSX 10.11中安装Scrapy时,“OSError: [Errno 1]操作不允许”(El Capitan)(系统完整性保护)
- 如何删除熊猫数据帧的最后一行数据
- 我如何在熊猫中找到数字列?
- 检查pandas数据框架索引中是否存在值
- 计算熊猫数量的最有效方法是什么?
- 如何在python中验证日期字符串格式?
- 用csv模块从csv文件中读取特定的列?
- 使用PyCrypto AES-256加密和解密
- “\d”在正则表达式中是数字吗?
- Python中的否定
- 列表推导式中的Lambda函数