Index()将给出列表中第一个出现的项。是否有一个巧妙的技巧可以返回一个元素列表中的所有索引?
当前回答
如果你需要搜索所有元素在某些索引之间的位置,你可以声明它们:
[i for i,x in enumerate([1,2,3,2]) if x==2 & 2<= i <=3] # -> [3]
其他回答
如果你使用的是Python 2,你可以用这个实现相同的功能:
f = lambda my_list, value:filter(lambda x: my_list[x] == value, range(len(my_list)))
其中my_list是要获取索引的列表,value是要搜索的值。用法:
f(some_list, some_element)
There’s an answer using np.where to find the indices of a single value, which is not faster than a list-comprehension, if the time to convert a list to an array is included The overhead of importing numpy and converting a list to a numpy.array probably makes using numpy a less efficient option for most circumstances. A careful timing analysis would be necessary. In cases where multiple functions/operations will need to be performed on the list, converting the list to an array, and then using numpy functions will likely be a faster option. This solution uses np.where and np.unique to find the indices of all unique elements in a list. Using np.where on an array (including the time to convert the list to an array) is slightly slower than a list-comprehension on a list, for finding all indices of all unique elements. This has been tested on an 2M element list with 4 unique values, and the size of the list/array and number of unique elements will have an impact. Other solutions using numpy on an array can be found in Get a list of all indices of repeated elements in a numpy array Tested in [python 3.10.4, numpy 1.23.1] and [python 3.11.0, numpy 1.23.4]
import numpy as np
import random # to create test list
# create sample list
random.seed(365)
l = [random.choice(['s1', 's2', 's3', 's4']) for _ in range(20)]
# convert the list to an array for use with these numpy methods
a = np.array(l)
# create a dict of each unique entry and the associated indices
idx = {v: np.where(a == v)[0].tolist() for v in np.unique(a)}
# print(idx)
{'s1': [7, 9, 10, 11, 17],
's2': [1, 3, 6, 8, 14, 18, 19],
's3': [0, 2, 13, 16],
's4': [4, 5, 12, 15]}
%timeit在2M元素列表中,有4个唯一的str元素
# create 2M element list
random.seed(365)
l = [random.choice(['s1', 's2', 's3', 's4']) for _ in range(2000000)]
功能
def test1():
# np.where: convert list to array and find indices of a single element
a = np.array(l)
return np.where(a == 's1')
def test2():
# list-comprehension: on list l and find indices of a single element
return [i for i, x in enumerate(l) if x == "s1"]
def test3():
# filter: on list l and find indices of a single element
return list(filter(lambda i: l[i]=="s1", range(len(l))))
def test4():
# use np.where and np.unique to find indices of all unique elements: convert list to array
a = np.array(l)
return {v: np.where(a == v)[0].tolist() for v in np.unique(a)}
def test5():
# list comprehension inside dict comprehension: on list l and find indices of all unique elements
return {req_word: [idx for idx, word in enumerate(l) if word == req_word] for req_word in set(l)}
函数调用
%timeit test1()
%timeit test2()
%timeit test3()
%timeit test4()
%timeit test5()
python 3.10.4
214 ms ± 19.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
85.1 ms ± 1.48 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
146 ms ± 1.65 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
365 ms ± 11.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
360 ms ± 5.82 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
结果python 3.11.0
209 ms ± 15.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
70.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
132 ms ± 4.65 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
371 ms ± 20.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
314 ms ± 15.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
一个基于动态列表理解的解决方案,以防我们事先不知道哪个元素:
lst = ['to', 'be', 'or', 'not', 'to', 'be']
{req_word: [idx for idx, word in enumerate(lst) if word == req_word] for req_word in set(lst)}
结果:
{'be': [1, 5], 'or': [2], 'to': [0, 4], 'not': [3]}
您也可以按照相同的思路考虑所有其他方法,但是使用index()您只能找到一个索引,尽管您可以自己设置出现次数。
虽然不是列表的直接解决方案,但numpy真的很适合这类事情:
import numpy as np
values = np.array([1,2,3,1,2,4,5,6,3,2,1])
searchval = 3
ii = np.where(values == searchval)[0]
返回:
ii ==>array([2, 8])
对于包含大量元素的列表(数组),这比其他解决方案要快得多。
获取列表中一个或多个(相同的)项的所有出现情况和位置
使用enumerate(alist),您可以存储第一个元素(n),当元素x等于您所寻找的元素时,它是列表的索引。
>>> alist = ['foo', 'spam', 'egg', 'foo']
>>> foo_indexes = [n for n,x in enumerate(alist) if x=='foo']
>>> foo_indexes
[0, 3]
>>>
让我们把函数命名为findindex
这个函数以项目和列表作为参数,并返回项目在列表中的位置,就像我们前面看到的那样。
def indexlist(item2find, list_or_string):
"Returns all indexes of an item in a list or a string"
return [n for n,item in enumerate(list_or_string) if item==item2find]
print(indexlist("1", "010101010"))
输出
[1, 3, 5, 7]
简单的
for n, i in enumerate([1, 2, 3, 4, 1]):
if i == 1:
print(n)
输出:
0
4
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录