Index()将给出列表中第一个出现的项。是否有一个巧妙的技巧可以返回一个元素列表中的所有索引?
当前回答
more_itertools。Locate查找满足条件的所有项的索引。
from more_itertools import locate
list(locate([0, 1, 1, 0, 1, 0, 0]))
# [1, 2, 4]
list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b'))
# [1, 3]
More_itertools是一个第三方库> PIP install More_itertools。
其他回答
对于所有发生的情况,还有一个解决方案(抱歉,如果重复):
values = [1,2,3,1,2,4,5,6,3,2,1]
map(lambda val: (val, [i for i in xrange(len(values)) if values[i] == val]), values)
一个基于动态列表理解的解决方案,以防我们事先不知道哪个元素:
lst = ['to', 'be', 'or', 'not', 'to', 'be']
{req_word: [idx for idx, word in enumerate(lst) if word == req_word] for req_word in set(lst)}
结果:
{'be': [1, 5], 'or': [2], 'to': [0, 4], 'not': [3]}
您也可以按照相同的思路考虑所有其他方法,但是使用index()您只能找到一个索引,尽管您可以自己设置出现次数。
创建一个生成器
生成器速度很快,占用的内存很小。它们可以让你灵活地使用结果。
def indices(iter, val):
"""Generator: Returns all indices of val in iter
Raises a ValueError if no val does not occur in iter
Passes on the AttributeError if iter does not have an index method (e.g. is a set)
"""
i = -1
NotFound = False
while not NotFound:
try:
i = iter.index(val, i+1)
except ValueError:
NotFound = True
else:
yield i
if i == -1:
raise ValueError("No occurrences of {v} in {i}".format(v = val, i = iter))
上面的代码可以用来创建一个索引列表:list(indexes (input,value));使用它们作为字典键:dict(索引(输入,值));求和:Sum (indexes (input,value));在for循环中index_ In indexes (input,value):;等……无需创建临时列表/元组或类似的。
在for循环中,当你调用下一个索引时,你将得到它,而不需要等待所有其他索引先计算出来。这意味着:如果出于某种原因跳出循环,就可以节省查找根本不需要的索引所需的时间。
它是如何工作的
在输入iter上调用.index来查找 瓦尔 使用第二个参数.index从该点开始 在最后发现的事件之后 收益率指数 重复操作,直到index引发ValueError
选择版本
我尝试了四种不同的流量控制版本;两个EAFP(使用try - except)和两个TBYL(在while语句中使用逻辑测试):
"WhileTrueBreak": while True: ... except ValueError: break. Surprisingly, this was usually a touch slower than option 2 and (IMV) less readable "WhileErrFalse": Using a bool variable err to identify when a ValueError is raised. This is generally the fastest and more readable than 1 "RemainingSlice": Check whether val is in the remaining part of the input using slicing: while val in iter[i:]. Unsurprisingly, this does not scale well "LastOccurrence": Check first where the last occurrence is, keep going while i < last
1、2和4之间的整体表现差异可以忽略不计,所以这取决于个人风格和偏好。鉴于.index使用ValueError来让你知道它没有找到任何东西,而不是例如返回None, eafp方法似乎适合我。
下面是4个代码变体和timeit(以毫秒为单位)对于不同长度的输入和稀疏匹配的结果
@version("WhileTrueBreak", versions)
def indices2(iter, val):
i = -1
while True:
try:
i = iter.index(val, i+1)
except ValueError:
break
else:
yield i
@version("WhileErrFalse", versions)
def indices5(iter, val):
i = -1
err = False
while not err:
try:
i = iter.index(val, i+1)
except ValueError:
err = True
else:
yield i
@version("RemainingSlice", versions)
def indices1(iter, val):
i = 0
while val in iter[i:]:
i = iter.index(val, i)
yield i
i += 1
@version("LastOccurrence", versions)
def indices4(iter,val):
i = 0
last = len(iter) - tuple(reversed(iter)).index(val)
while i < last:
i = iter.index(val, i)
yield i
i += 1
Length: 100, Ocurrences: 4.0%
{'WhileTrueBreak': 0.0074799987487494946, 'WhileErrFalse': 0.006440002471208572, 'RemainingSlice': 0.01221001148223877, 'LastOccurrence': 0.00801000278443098}
Length: 1000, Ocurrences: 1.2%
{'WhileTrueBreak': 0.03101000329479575, 'WhileErrFalse': 0.0278000021353364, 'RemainingSlice': 0.08278000168502331, 'LastOccurrence': 0.03986000083386898}
Length: 10000, Ocurrences: 2.05%
{'WhileTrueBreak': 0.18062000162899494, 'WhileErrFalse': 0.1810499932616949, 'RemainingSlice': 2.9145700042136014, 'LastOccurrence': 0.2049500006251037}
Length: 100000, Ocurrences: 1.977%
{'WhileTrueBreak': 1.9361200043931603, 'WhileErrFalse': 1.7280600033700466, 'RemainingSlice': 254.4725100044161, 'LastOccurrence': 1.9101499929092824}
Length: 100000, Ocurrences: 9.873%
{'WhileTrueBreak': 2.832529996521771, 'WhileErrFalse': 2.9984100023284554, 'RemainingSlice': 1132.4922299943864, 'LastOccurrence': 2.6660699979402125}
Length: 100000, Ocurrences: 25.058%
{'WhileTrueBreak': 5.119729996658862, 'WhileErrFalse': 5.2082200068980455, 'RemainingSlice': 2443.0577100021765, 'LastOccurrence': 4.75954000139609}
Length: 100000, Ocurrences: 49.698%
{'WhileTrueBreak': 9.372120001353323, 'WhileErrFalse': 8.447749994229525, 'RemainingSlice': 5042.717969999649, 'LastOccurrence': 8.050809998530895}
在python2中使用filter()。
>>> q = ['Yeehaw', 'Yeehaw', 'Googol', 'B9', 'Googol', 'NSM', 'B9', 'NSM', 'Dont Ask', 'Googol']
>>> filter(lambda i: q[i]=="Googol", range(len(q)))
[2, 4, 9]
这里是使用np的时间性能比较。Where vs list_comprehension。好像是np。哪里的平均速度更快。
# np.where
start_times = []
end_times = []
for i in range(10000):
start = time.time()
start_times.append(start)
temp_list = np.array([1,2,3,3,5])
ixs = np.where(temp_list==3)[0].tolist()
end = time.time()
end_times.append(end)
print("Took on average {} seconds".format(
np.mean(end_times)-np.mean(start_times)))
Took on average 3.81469726562e-06 seconds
# list_comprehension
start_times = []
end_times = []
for i in range(10000):
start = time.time()
start_times.append(start)
temp_list = np.array([1,2,3,3,5])
ixs = [i for i in range(len(temp_list)) if temp_list[i]==3]
end = time.time()
end_times.append(end)
print("Took on average {} seconds".format(
np.mean(end_times)-np.mean(start_times)))
Took on average 4.05311584473e-06 seconds
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 数组与列表的性能
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录