Index()将给出列表中第一个出现的项。是否有一个巧妙的技巧可以返回一个元素列表中的所有索引?


当前回答

对于所有发生的情况,还有一个解决方案(抱歉,如果重复):

values = [1,2,3,1,2,4,5,6,3,2,1]
map(lambda val: (val, [i for i in xrange(len(values)) if values[i] == val]), values)

其他回答

对于所有发生的情况,还有一个解决方案(抱歉,如果重复):

values = [1,2,3,1,2,4,5,6,3,2,1]
map(lambda val: (val, [i for i in xrange(len(values)) if values[i] == val]), values)

获取列表中一个或多个(相同的)项的所有出现情况和位置

使用enumerate(alist),您可以存储第一个元素(n),当元素x等于您所寻找的元素时,它是列表的索引。

>>> alist = ['foo', 'spam', 'egg', 'foo']
>>> foo_indexes = [n for n,x in enumerate(alist) if x=='foo']
>>> foo_indexes
[0, 3]
>>>

让我们把函数命名为findindex

这个函数以项目和列表作为参数,并返回项目在列表中的位置,就像我们前面看到的那样。

def indexlist(item2find, list_or_string):
  "Returns all indexes of an item in a list or a string"
  return [n for n,item in enumerate(list_or_string) if item==item2find]

print(indexlist("1", "010101010"))

输出


[1, 3, 5, 7]

简单的

for n, i in enumerate([1, 2, 3, 4, 1]):
    if i == 1:
        print(n)

输出:

0
4

在python2中使用filter()。

>>> q = ['Yeehaw', 'Yeehaw', 'Googol', 'B9', 'Googol', 'NSM', 'B9', 'NSM', 'Dont Ask', 'Googol']
>>> filter(lambda i: q[i]=="Googol", range(len(q)))
[2, 4, 9]
occurrences = lambda s, lst: (i for i,e in enumerate(lst) if e == s)
list(occurrences(1, [1,2,3,1])) # = [0, 3]

这里是使用np的时间性能比较。Where vs list_comprehension。好像是np。哪里的平均速度更快。

# np.where
start_times = []
end_times = []
for i in range(10000):
    start = time.time()
    start_times.append(start)
    temp_list = np.array([1,2,3,3,5])
    ixs = np.where(temp_list==3)[0].tolist()
    end = time.time()
    end_times.append(end)
print("Took on average {} seconds".format(
    np.mean(end_times)-np.mean(start_times)))
Took on average 3.81469726562e-06 seconds
# list_comprehension
start_times = []
end_times = []
for i in range(10000):
    start = time.time()
    start_times.append(start)
    temp_list = np.array([1,2,3,3,5])
    ixs = [i for i in range(len(temp_list)) if temp_list[i]==3]
    end = time.time()
    end_times.append(end)
print("Took on average {} seconds".format(
    np.mean(end_times)-np.mean(start_times)))
Took on average 4.05311584473e-06 seconds