Index()将给出列表中第一个出现的项。是否有一个巧妙的技巧可以返回一个元素列表中的所有索引?
当前回答
如何:
In [1]: l=[1,2,3,4,3,2,5,6,7]
In [2]: [i for i,val in enumerate(l) if val==3]
Out[2]: [2, 4]
其他回答
对于所有发生的情况,还有一个解决方案(抱歉,如果重复):
values = [1,2,3,1,2,4,5,6,3,2,1]
map(lambda val: (val, [i for i in xrange(len(values)) if values[i] == val]), values)
你可以使用枚举的列表推导式:
indices = [i for i, x in enumerate(my_list) if x == "whatever"]
迭代器enumerate(my_list)为列表中的每一项生成对(index, item)。使用i, x作为循环变量目标,将这些对解包到索引i和列表项x中。我们向下筛选到所有符合条件的x,并选择这些元素的索引i。
如何:
In [1]: l=[1,2,3,4,3,2,5,6,7]
In [2]: [i for i,val in enumerate(l) if val==3]
Out[2]: [2, 4]
使用for循环:
使用枚举和列表理解的答案更python化,但不一定更快。然而,这个答案是针对那些可能不被允许使用这些内置功能的学生。 创建一个空列表,索引 创建for I in range(len(x)):循环,该循环本质上是遍历索引位置列表[0,1,2,3,…]len (x) 1] 在循环中,将任意i(其中x[i]与value匹配)添加到索引中 X [i]通过索引访问列表
def get_indices(x: list, value: int) -> list:
indices = list()
for i in range(len(x)):
if x[i] == value:
indices.append(i)
return indices
n = [1, 2, 3, -50, -60, 0, 6, 9, -60, -60]
print(get_indices(n, -60))
>>> [4, 8, 9]
函数get_indexes是用类型提示实现的。在这种情况下,列表n是一串int型,因此我们搜索值,也定义为int型。
使用while循环和.index:
对于.index,使用try-except进行错误处理,因为如果value不在列表中,则会发生ValueError。
def get_indices(x: list, value: int) -> list:
indices = list()
i = 0
while True:
try:
# find an occurrence of value and update i to that index
i = x.index(value, i)
# add i to the list
indices.append(i)
# advance i by 1
i += 1
except ValueError as e:
break
return indices
print(get_indices(n, -60))
>>> [4, 8, 9]
There’s an answer using np.where to find the indices of a single value, which is not faster than a list-comprehension, if the time to convert a list to an array is included The overhead of importing numpy and converting a list to a numpy.array probably makes using numpy a less efficient option for most circumstances. A careful timing analysis would be necessary. In cases where multiple functions/operations will need to be performed on the list, converting the list to an array, and then using numpy functions will likely be a faster option. This solution uses np.where and np.unique to find the indices of all unique elements in a list. Using np.where on an array (including the time to convert the list to an array) is slightly slower than a list-comprehension on a list, for finding all indices of all unique elements. This has been tested on an 2M element list with 4 unique values, and the size of the list/array and number of unique elements will have an impact. Other solutions using numpy on an array can be found in Get a list of all indices of repeated elements in a numpy array Tested in [python 3.10.4, numpy 1.23.1] and [python 3.11.0, numpy 1.23.4]
import numpy as np
import random # to create test list
# create sample list
random.seed(365)
l = [random.choice(['s1', 's2', 's3', 's4']) for _ in range(20)]
# convert the list to an array for use with these numpy methods
a = np.array(l)
# create a dict of each unique entry and the associated indices
idx = {v: np.where(a == v)[0].tolist() for v in np.unique(a)}
# print(idx)
{'s1': [7, 9, 10, 11, 17],
's2': [1, 3, 6, 8, 14, 18, 19],
's3': [0, 2, 13, 16],
's4': [4, 5, 12, 15]}
%timeit在2M元素列表中,有4个唯一的str元素
# create 2M element list
random.seed(365)
l = [random.choice(['s1', 's2', 's3', 's4']) for _ in range(2000000)]
功能
def test1():
# np.where: convert list to array and find indices of a single element
a = np.array(l)
return np.where(a == 's1')
def test2():
# list-comprehension: on list l and find indices of a single element
return [i for i, x in enumerate(l) if x == "s1"]
def test3():
# filter: on list l and find indices of a single element
return list(filter(lambda i: l[i]=="s1", range(len(l))))
def test4():
# use np.where and np.unique to find indices of all unique elements: convert list to array
a = np.array(l)
return {v: np.where(a == v)[0].tolist() for v in np.unique(a)}
def test5():
# list comprehension inside dict comprehension: on list l and find indices of all unique elements
return {req_word: [idx for idx, word in enumerate(l) if word == req_word] for req_word in set(l)}
函数调用
%timeit test1()
%timeit test2()
%timeit test3()
%timeit test4()
%timeit test5()
python 3.10.4
214 ms ± 19.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
85.1 ms ± 1.48 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
146 ms ± 1.65 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
365 ms ± 11.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
360 ms ± 5.82 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
结果python 3.11.0
209 ms ± 15.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
70.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
132 ms ± 4.65 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
371 ms ± 20.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
314 ms ± 15.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
推荐文章
- 格式y轴为百分比
- 熊猫连接问题:列重叠但没有指定后缀
- 为什么空字典在Python中是一个危险的默认值?
- 在Python中,冒号等于(:=)是什么意思?
- Python "SyntaxError:文件中的非ascii字符'\xe2' "
- 如何从psycopg2游标获得列名列表?
- Python中dict对象的联合
- 如何有效地比较两个无序列表(不是集合)?
- 如何在交互式Python中查看整个命令历史?
- 如何显示有两个小数点后的浮点数?
- 如何用OpenCV2.0和Python2.6调整图像大小
- 在每个列表元素上调用int()函数?
- 将Set<T>转换为List<T>的最简洁的方法
- 当使用代码存储库时,如何引用资源的相对路径
- 如何在Flask-SQLAlchemy中按id删除记录