我想计算两个列表之间的余弦相似度,比如说,列表1是dataSetI,列表2是dataSetII。

假设dataSetI是[3,45,7,2],dataSetII是[2,54,13,15]。列表的长度总是相等的。我想将余弦相似度报告为0到1之间的数。

dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]

def cosine_similarity(list1, list2):
  # How to?
  pass

print(cosine_similarity(dataSetI, dataSetII))

当前回答

所有答案都非常适合不能使用NumPy的情况。如果可以的话,这里有另一种方法:

def cosine(x, y):
    dot_products = np.dot(x, y.T)
    norm_products = np.linalg.norm(x) * np.linalg.norm(y)
    return dot_products / (norm_products + EPSILON)

还要记住EPSILON = 1e-07,以确保组织安全。

其他回答

另一个版本,如果你有一个场景,你有一个向量列表和一个查询向量,你想要计算查询向量与列表中所有向量的余弦相似度,你可以用下面的方式一次性完成:

>>> import numpy as np

>>> A      # list of vectors, shape -> m x n
array([[ 3, 45,  7,  2],
       [ 1, 23,  3,  4]])

>>> B      # query vector, shape -> 1 x n
array([ 2, 54, 13, 15])

>>> similarity_scores = A.dot(B)/ (np.linalg.norm(A, axis=1) * np.linalg.norm(B))

>>> similarity_scores
array([0.97228425, 0.99026919])
import math
from itertools import izip

def dot_product(v1, v2):
    return sum(map(lambda x: x[0] * x[1], izip(v1, v2)))

def cosine_measure(v1, v2):
    prod = dot_product(v1, v2)
    len1 = math.sqrt(dot_product(v1, v1))
    len2 = math.sqrt(dot_product(v2, v2))
    return prod / (len1 * len2)

你可以在计算后四舍五入:

cosine = format(round(cosine_measure(v1, v2), 3))

如果你想让它真的很短,你可以使用下面的一行代码:

from math import sqrt
from itertools import izip

def cosine_measure(v1, v2):
    return (lambda (x, y, z): x / sqrt(y * z))(reduce(lambda x, y: (x[0] + y[0] * y[1], x[1] + y[0]**2, x[2] + y[1]**2), izip(v1, v2), (0, 0, 0)))

所有答案都非常适合不能使用NumPy的情况。如果可以的话,这里有另一种方法:

def cosine(x, y):
    dot_products = np.dot(x, y.T)
    norm_products = np.linalg.norm(x) * np.linalg.norm(y)
    return dot_products / (norm_products + EPSILON)

还要记住EPSILON = 1e-07,以确保组织安全。

另一个仅基于numpy的版本

from numpy import dot
from numpy.linalg import norm

cos_sim = dot(a, b)/(norm(a)*norm(b))

这里有一个实现,也适用于矩阵。它的行为完全像sklearn余弦相似度:

def cosine_similarity(a, b):    
    return np.divide(
        np.dot(a, b.T),
        np.linalg.norm(
            a,
            axis=1,
            keepdims=True
        ) 
        @ # matrix multiplication
        np.linalg.norm(
            b,
            axis=1,
            keepdims=True
        ).T
    )

符号@代表矩阵乘法。看到 “at”(@)符号在Python中有什么作用?