我想计算两个列表之间的余弦相似度,比如说,列表1是dataSetI,列表2是dataSetII。
假设dataSetI是[3,45,7,2],dataSetII是[2,54,13,15]。列表的长度总是相等的。我想将余弦相似度报告为0到1之间的数。
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
def cosine_similarity(list1, list2):
# How to?
pass
print(cosine_similarity(dataSetI, dataSetII))
不使用任何导入
math.sqrt (x)
可以用
x * * 5
如果不使用numpy.dot(),您必须使用列表理解创建自己的dot函数:
def dot(A,B):
return (sum(a*b for a,b in zip(A,B)))
然后它只是一个应用余弦相似度公式的简单问题:
def cosine_similarity(a,b):
return dot(a,b) / ( (dot(a,a) **.5) * (dot(b,b) ** .5) )
另一个版本,如果你有一个场景,你有一个向量列表和一个查询向量,你想要计算查询向量与列表中所有向量的余弦相似度,你可以用下面的方式一次性完成:
>>> import numpy as np
>>> A # list of vectors, shape -> m x n
array([[ 3, 45, 7, 2],
[ 1, 23, 3, 4]])
>>> B # query vector, shape -> 1 x n
array([ 2, 54, 13, 15])
>>> similarity_scores = A.dot(B)/ (np.linalg.norm(A, axis=1) * np.linalg.norm(B))
>>> similarity_scores
array([0.97228425, 0.99026919])
我根据问题中的几个答案做了一个基准测试,下面的代码片段被认为是最好的选择:
def dot_product2(v1, v2):
return sum(map(operator.mul, v1, v2))
def vector_cos5(v1, v2):
prod = dot_product2(v1, v2)
len1 = math.sqrt(dot_product2(v1, v1))
len2 = math.sqrt(dot_product2(v2, v2))
return prod / (len1 * len2)
结果让我惊讶的是,基于scipy的实现并不是最快的。我分析发现,scipy中的余弦需要大量时间从python列表转换到numpy数组。