我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。
当前回答
说到DP solution,我发现很奇怪的是没有人提到LIS可以简化为LCS。你所需要做的就是对原始序列的副本进行排序,删除所有重复的副本,然后对它们进行LCS。在伪代码中是:
def LIS(S):
T = sort(S)
T = removeDuplicates(T)
return LCS(S, T)
以及用Go语言编写的完整实现。如果你不需要重构解,你就不需要维护整个n^2 DP矩阵。
func lcs(arr1 []int) int {
arr2 := make([]int, len(arr1))
for i, v := range arr1 {
arr2[i] = v
}
sort.Ints(arr1)
arr3 := []int{}
prev := arr1[0] - 1
for _, v := range arr1 {
if v != prev {
prev = v
arr3 = append(arr3, v)
}
}
n1, n2 := len(arr1), len(arr3)
M := make([][]int, n2 + 1)
e := make([]int, (n1 + 1) * (n2 + 1))
for i := range M {
M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
}
for i := 1; i <= n2; i++ {
for j := 1; j <= n1; j++ {
if arr2[j - 1] == arr3[i - 1] {
M[i][j] = M[i - 1][j - 1] + 1
} else if M[i - 1][j] > M[i][j - 1] {
M[i][j] = M[i - 1][j]
} else {
M[i][j] = M[i][j - 1]
}
}
}
return M[n2][n1]
}
其他回答
这是一个O(n²)的Java实现。我只是没有使用二分搜索来找到S中最小的元素,它是>= than x,我只是使用了一个for循环。使用二分搜索将使复杂度为O(n logn)
public static void olis(int[] seq){
int[] memo = new int[seq.length];
memo[0] = seq[0];
int pos = 0;
for (int i=1; i<seq.length; i++){
int x = seq[i];
if (memo[pos] < x){
pos++;
memo[pos] = x;
} else {
for(int j=0; j<=pos; j++){
if (memo[j] >= x){
memo[j] = x;
break;
}
}
}
//just to print every step
System.out.println(Arrays.toString(memo));
}
//the final array with the LIS
System.out.println(Arrays.toString(memo));
System.out.println("The length of lis is " + (pos + 1));
}
用Java签出包含数组元素的最长递增子序列的代码
http://ideone.com/Nd2eba
/**
** Java Program to implement Longest Increasing Subsequence Algorithm
**/
import java.util.Scanner;
/** Class LongestIncreasingSubsequence **/
class LongestIncreasingSubsequence
{
/** function lis **/
public int[] lis(int[] X)
{
int n = X.length - 1;
int[] M = new int[n + 1];
int[] P = new int[n + 1];
int L = 0;
for (int i = 1; i < n + 1; i++)
{
int j = 0;
/** Linear search applied here. Binary Search can be applied too.
binary search for the largest positive j <= L such that
X[M[j]] < X[i] (or set j = 0 if no such value exists) **/
for (int pos = L ; pos >= 1; pos--)
{
if (X[M[pos]] < X[i])
{
j = pos;
break;
}
}
P[i] = M[j];
if (j == L || X[i] < X[M[j + 1]])
{
M[j + 1] = i;
L = Math.max(L,j + 1);
}
}
/** backtrack **/
int[] result = new int[L];
int pos = M[L];
for (int i = L - 1; i >= 0; i--)
{
result[i] = X[pos];
pos = P[pos];
}
return result;
}
/** Main Function **/
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Longest Increasing Subsequence Algorithm Test\n");
System.out.println("Enter number of elements");
int n = scan.nextInt();
int[] arr = new int[n + 1];
System.out.println("\nEnter "+ n +" elements");
for (int i = 1; i <= n; i++)
arr[i] = scan.nextInt();
LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence();
int[] result = obj.lis(arr);
/** print result **/
System.out.print("\nLongest Increasing Subsequence : ");
for (int i = 0; i < result.length; i++)
System.out.print(result[i] +" ");
System.out.println();
}
}
下面是O(n^2)算法的Scala实现:
object Solve {
def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
xs.foldLeft(List[(Int, List[T])]()) {
(sofar, x) =>
if (sofar.isEmpty) List((1, List(x)))
else {
val resIfEndsAtCurr = (sofar, xs).zipped map {
(tp, y) =>
val len = tp._1
val seq = tp._2
if (ord.lteq(y, x)) {
(len + 1, x :: seq) // reversely recorded to avoid O(n)
} else {
(1, List(x))
}
}
sofar :+ resIfEndsAtCurr.maxBy(_._1)
}
}.maxBy(_._1)._2.reverse
}
def main(args: Array[String]) = {
println(longestIncrSubseq(List(
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
}
}
这里是java O(nlogn)的实现
import java.util.Scanner;
public class LongestIncreasingSeq {
private static int binarySearch(int table[],int a,int len){
int end = len-1;
int beg = 0;
int mid = 0;
int result = -1;
while(beg <= end){
mid = (end + beg) / 2;
if(table[mid] < a){
beg=mid+1;
result = mid;
}else if(table[mid] == a){
return len-1;
}else{
end = mid-1;
}
}
return result;
}
public static void main(String[] args) {
// int[] t = {1, 2, 5,9,16};
// System.out.println(binarySearch(t , 9, 5));
Scanner in = new Scanner(System.in);
int size = in.nextInt();//4;
int A[] = new int[size];
int table[] = new int[A.length];
int k = 0;
while(k<size){
A[k++] = in.nextInt();
if(k<size-1)
in.nextLine();
}
table[0] = A[0];
int len = 1;
for (int i = 1; i < A.length; i++) {
if(table[0] > A[i]){
table[0] = A[i];
}else if(table[len-1]<A[i]){
table[len++]=A[i];
}else{
table[binarySearch(table, A[i],len)+1] = A[i];
}
}
System.out.println(len);
}
}
//可以使用TreeSet
最长递增子序列(Java)
import java.util.*;
class ChainHighestValue implements Comparable<ChainHighestValue>{
int highestValue;
int chainLength;
ChainHighestValue(int highestValue,int chainLength) {
this.highestValue = highestValue;
this.chainLength = chainLength;
}
@Override
public int compareTo(ChainHighestValue o) {
return this.chainLength-o.chainLength;
}
}
public class LongestIncreasingSubsequenceLinkedList {
private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
for(int i=0;i<size;i++){
int currValue=arr[i];
if(valuePairs.size()==0){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}else{
try{
ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
seqList.get(index).add(arr[i]);
heighestIndex.highestValue=arr[i];
heighestIndex.chainLength+=1;
}catch (Exception e){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}
}
}
ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
return seqList.get(index);
}
public static void main(String[] args){
int arry[]={5,1,3,6,11,30,32,5,3,73,79};
//int arryB[]={3,1,5,2,6,4,9};
LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
System.out.println("Longest Incrementing Subsequence:");
for(Integer a: LIS){
System.out.print(a+" ");
}
}
}