我读过维基百科上关于响应式编程的文章。我还读过一篇关于函数式响应式编程的小文章。这些描述相当抽象。
函数式响应式编程(FRP)在实践中意味着什么? 反应式编程(相对于非反应式编程?)由什么组成?
我的背景是命令式/OO语言,所以与此范例相关的解释将受到赞赏。
我读过维基百科上关于响应式编程的文章。我还读过一篇关于函数式响应式编程的小文章。这些描述相当抽象。
函数式响应式编程(FRP)在实践中意味着什么? 反应式编程(相对于非反应式编程?)由什么组成?
我的背景是命令式/OO语言,所以与此范例相关的解释将受到赞赏。
当前回答
在纯函数式编程中,没有副作用。对于许多类型的软件(例如,任何与用户交互的软件),在某种程度上副作用都是必要的。
在保持函数式风格的同时获得类似副作用的行为的一种方法是使用函数式响应式编程。这是函数式编程和响应式编程的结合。(你链接到的维基百科文章是关于后者的。)
响应式编程背后的基本思想是,有特定的数据类型表示“随时间”的值。涉及这些随时间变化的值的计算本身也具有随时间变化的值。
例如,您可以将鼠标坐标表示为一对随时间变化的整数值。假设我们有这样的东西(这是伪代码):
x = <mouse-x>;
y = <mouse-y>;
在任何时刻,x和y都是鼠标的坐标。与非响应式编程不同,我们只需要进行一次赋值,x和y变量将自动保持“最新”。这就是响应式编程和函数式编程协同工作的原因:响应式编程消除了对变量突变的需要,同时仍然允许您完成许多可以通过变量突变完成的工作。
如果我们在此基础上进行一些计算,得到的值也将是随时间变化的值。例如:
minX = x - 16;
minY = y - 16;
maxX = x + 16;
maxY = y + 16;
在这个例子中,minX总是比鼠标指针的x坐标小16。使用响应式感知库,你可以这样说:
rectangle(minX, minY, maxX, maxY)
一个32x32的方框将围绕鼠标指针绘制,并跟踪它的移动位置。
这是一篇关于函数式响应式编程的很好的论文。
其他回答
好的,从背景知识和阅读你所指向的维基百科页面来看,响应式编程似乎有点像数据流计算,但有特定的外部“刺激”触发一组节点来触发并执行它们的计算。
这非常适合UI设计,例如,触摸用户界面控件(例如,音乐播放应用程序上的音量控制)可能需要更新各种显示项和音频输出的实际音量。当您修改体积(比如一个滑块)时,这将对应于修改有向图中与节点相关的值。
具有“体积值”节点边缘的各种节点将自动被触发,任何必要的计算和更新将自然地贯穿整个应用程序。应用程序对用户刺激“做出反应”。函数式响应式编程只是在函数式语言中实现这一思想,或者通常在函数式编程范式中实现。
有关“数据流计算”的更多信息,请在维基百科或使用您喜欢的搜索引擎上搜索这两个词。总体思想是这样的:程序是一个节点的有向图,每个节点执行一些简单的计算。这些节点通过图链接相互连接,图链接将一些节点的输出提供给其他节点的输入。
当节点触发或执行其计算时,连接到其输出的节点将“触发”或“标记”相应的输入。任何触发/标记/可用所有输入的节点都会自动触发。图可以是隐式的,也可以是显式的,具体取决于响应式编程是如何实现的。
Nodes can be looked at as firing in parallel, but often they are executed serially or with limited parallelism (for example, there may be a few threads executing them). A famous example was the Manchester Dataflow Machine, which (IIRC) used a tagged data architecture to schedule execution of nodes in the graph through one or more execution units. Dataflow computing is fairly well suited to situations in which triggering computations asynchronously giving rise to cascades of computations works better than trying to have execution be governed by a clock (or clocks).
响应式编程引入了这种“执行级联”的思想,似乎以一种类似数据流的方式来考虑程序,但有一个附带条件,即一些节点与“外部世界”挂钩,当这些类似感知的节点发生变化时,执行级联就会被触发。程序的执行看起来就像一个复杂的反射弧。程序在两个刺激之间可能是基本固定的,也可能不是,也可能在两个刺激之间稳定在基本固定的状态。
"non-reactive" programming would be programming with a very different view of the flow of execution and relationship to external inputs. It's likely to be somewhat subjective, since people will likely be tempted to say anything that responds to external inputs "reacts" to them. But looking at the spirit of the thing, a program that polls an event queue at a fixed interval and dispatches any events found to functions (or threads) is less reactive (because it only attends to user input at a fixed interval). Again, it's the spirit of the thing here: one can imagine putting a polling implementation with a fast polling interval into a system at a very low level and program in a reactive fashion on top of it.
Andre Staltz的这篇文章是迄今为止我所见过的最好、最清楚的解释。
以下是文章中的一些引述:
响应式编程是使用异步数据流进行编程。 最重要的是,你会得到一个神奇的功能工具箱来组合、创建和过滤任何这些流。
下面是文章中精彩图表的一个例子:
伙计,这主意太棒了!为什么1998年的时候我没有发现?总之,这是我对Fran教程的理解。建议是最受欢迎的,我正在考虑开始一个基于此游戏引擎。
import pygame
from pygame.surface import Surface
from pygame.sprite import Sprite, Group
from pygame.locals import *
from time import time as epoch_delta
from math import sin, pi
from copy import copy
pygame.init()
screen = pygame.display.set_mode((600,400))
pygame.display.set_caption('Functional Reactive System Demo')
class Time:
def __float__(self):
return epoch_delta()
time = Time()
class Function:
def __init__(self, var, func, phase = 0., scale = 1., offset = 0.):
self.var = var
self.func = func
self.phase = phase
self.scale = scale
self.offset = offset
def copy(self):
return copy(self)
def __float__(self):
return self.func(float(self.var) + float(self.phase)) * float(self.scale) + float(self.offset)
def __int__(self):
return int(float(self))
def __add__(self, n):
result = self.copy()
result.offset += n
return result
def __mul__(self, n):
result = self.copy()
result.scale += n
return result
def __inv__(self):
result = self.copy()
result.scale *= -1.
return result
def __abs__(self):
return Function(self, abs)
def FuncTime(func, phase = 0., scale = 1., offset = 0.):
global time
return Function(time, func, phase, scale, offset)
def SinTime(phase = 0., scale = 1., offset = 0.):
return FuncTime(sin, phase, scale, offset)
sin_time = SinTime()
def CosTime(phase = 0., scale = 1., offset = 0.):
phase += pi / 2.
return SinTime(phase, scale, offset)
cos_time = CosTime()
class Circle:
def __init__(self, x, y, radius):
self.x = x
self.y = y
self.radius = radius
@property
def size(self):
return [self.radius * 2] * 2
circle = Circle(
x = cos_time * 200 + 250,
y = abs(sin_time) * 200 + 50,
radius = 50)
class CircleView(Sprite):
def __init__(self, model, color = (255, 0, 0)):
Sprite.__init__(self)
self.color = color
self.model = model
self.image = Surface([model.radius * 2] * 2).convert_alpha()
self.rect = self.image.get_rect()
pygame.draw.ellipse(self.image, self.color, self.rect)
def update(self):
self.rect[:] = int(self.model.x), int(self.model.y), self.model.radius * 2, self.model.radius * 2
circle_view = CircleView(circle)
sprites = Group(circle_view)
running = True
while running:
for event in pygame.event.get():
if event.type == QUIT:
running = False
if event.type == KEYDOWN and event.key == K_ESCAPE:
running = False
screen.fill((0, 0, 0))
sprites.update()
sprites.draw(screen)
pygame.display.flip()
pygame.quit()
简而言之:如果每个组成部分都可以被视为一个数字,那么整个系统就可以被视为一个数学方程,对吗?
Conal Elliott的论文《Simply efficient functional reactivity》(直接PDF, 233 KB)是一个相当好的介绍。相应的库也可以工作。
这篇论文现在被另一篇论文取代,推拉函数式反应性编程(直接PDF, 286 KB)。
关于响应式编程的简短而清晰的解释出现在Cyclejs -响应式编程中,它使用了简单和可视化的示例。
一个[模块/组件/对象]是反应性的意味着它是完全负责的 通过对外部事件的反应来管理自己的状态。 这种方法的好处是什么?这就是控制反转, 主要是因为[module/Component/object]对自己负责,使用私有方法来改进封装。
这是一个很好的起点,而不是一个完整的知识来源。从那里你可以跳到更复杂和更深入的文件。