我读过维基百科上关于响应式编程的文章。我还读过一篇关于函数式响应式编程的小文章。这些描述相当抽象。
函数式响应式编程(FRP)在实践中意味着什么? 反应式编程(相对于非反应式编程?)由什么组成?
我的背景是命令式/OO语言,所以与此范例相关的解释将受到赞赏。
我读过维基百科上关于响应式编程的文章。我还读过一篇关于函数式响应式编程的小文章。这些描述相当抽象。
函数式响应式编程(FRP)在实践中意味着什么? 反应式编程(相对于非反应式编程?)由什么组成?
我的背景是命令式/OO语言,所以与此范例相关的解释将受到赞赏。
当前回答
对我来说,这是关于符号的2个不同的含义=:
在数学中,x = sint的意思是,x是sint的另一个名字。所以写x + y和sin(t) + y是一样的。函数式响应式编程在这方面就像数学:如果你写x + y,它是用t在使用时的任何值来计算的。 在类c编程语言(命令式语言)中,x = sin(t)是一个赋值:它意味着x存储在赋值时所取的sin(t)的值。
其他回答
伙计,这主意太棒了!为什么1998年的时候我没有发现?总之,这是我对Fran教程的理解。建议是最受欢迎的,我正在考虑开始一个基于此游戏引擎。
import pygame
from pygame.surface import Surface
from pygame.sprite import Sprite, Group
from pygame.locals import *
from time import time as epoch_delta
from math import sin, pi
from copy import copy
pygame.init()
screen = pygame.display.set_mode((600,400))
pygame.display.set_caption('Functional Reactive System Demo')
class Time:
def __float__(self):
return epoch_delta()
time = Time()
class Function:
def __init__(self, var, func, phase = 0., scale = 1., offset = 0.):
self.var = var
self.func = func
self.phase = phase
self.scale = scale
self.offset = offset
def copy(self):
return copy(self)
def __float__(self):
return self.func(float(self.var) + float(self.phase)) * float(self.scale) + float(self.offset)
def __int__(self):
return int(float(self))
def __add__(self, n):
result = self.copy()
result.offset += n
return result
def __mul__(self, n):
result = self.copy()
result.scale += n
return result
def __inv__(self):
result = self.copy()
result.scale *= -1.
return result
def __abs__(self):
return Function(self, abs)
def FuncTime(func, phase = 0., scale = 1., offset = 0.):
global time
return Function(time, func, phase, scale, offset)
def SinTime(phase = 0., scale = 1., offset = 0.):
return FuncTime(sin, phase, scale, offset)
sin_time = SinTime()
def CosTime(phase = 0., scale = 1., offset = 0.):
phase += pi / 2.
return SinTime(phase, scale, offset)
cos_time = CosTime()
class Circle:
def __init__(self, x, y, radius):
self.x = x
self.y = y
self.radius = radius
@property
def size(self):
return [self.radius * 2] * 2
circle = Circle(
x = cos_time * 200 + 250,
y = abs(sin_time) * 200 + 50,
radius = 50)
class CircleView(Sprite):
def __init__(self, model, color = (255, 0, 0)):
Sprite.__init__(self)
self.color = color
self.model = model
self.image = Surface([model.radius * 2] * 2).convert_alpha()
self.rect = self.image.get_rect()
pygame.draw.ellipse(self.image, self.color, self.rect)
def update(self):
self.rect[:] = int(self.model.x), int(self.model.y), self.model.radius * 2, self.model.radius * 2
circle_view = CircleView(circle)
sprites = Group(circle_view)
running = True
while running:
for event in pygame.event.get():
if event.type == QUIT:
running = False
if event.type == KEYDOWN and event.key == K_ESCAPE:
running = False
screen.fill((0, 0, 0))
sprites.update()
sprites.draw(screen)
pygame.display.flip()
pygame.quit()
简而言之:如果每个组成部分都可以被视为一个数字,那么整个系统就可以被视为一个数学方程,对吗?
看看Rx, net的响应式扩展。他们指出,使用IEnumerable,你基本上是从流中“拉”出来的。IQueryable/IEnumerable上的Linq查询是集合操作,从集合中“吸”出结果。但是在IObservable上使用相同的操作符,你可以编写“反应”的Linq查询。
例如,您可以编写这样的Linq查询 (from MyObservableSetOfMouseMovements中的m m.X<100 m.Y<100 选择新的点(m.X,m.Y))。
有了Rx扩展,就是这样:你有UI代码,它会对传入的鼠标移动流做出反应,并在你处于100,100框时进行绘制……
根据前面的答案,在数学上,我们似乎只是以更高的顺序思考。我们不认为值x具有类型x,而是考虑函数x: T→x,其中T是时间的类型,可以是自然数、整数或连续统。当我们用编程语言写y:= x + 1时,我们实际上是指方程y(t) = x(t) + 1。
免责声明:我的答案是在rx.js的上下文中给出的——一个用于Javascript的“响应式编程”库。
在函数式编程中,不是遍历集合的每个项,而是对集合本身应用高阶函数(hof)。因此,FRP背后的思想是,与其处理每个单独的事件,不如创建一个事件流(使用可观察对象*实现),并对其应用HoFs。通过这种方式,您可以将系统可视化为连接发布者和订阅者的数据管道。
The major advantages of using an observable are: i) it abstracts away state from your code, e.g., if you want the event handler to get fired only for every 'n'th event, or stop firing after the first 'n' events, or start firing only after the first 'n' events, you can just use the HoFs (filter, takeUntil, skip respectively) instead of setting, updating and checking counters. ii) it improves code locality - if you have 5 different event handlers changing the state of a component, you can merge their observables and define a single event handler on the merged observable instead, effectively combining 5 event handlers into 1. This makes it very easy to reason about what events in your entire system can affect a component, since it's all present in a single handler.
可观察对象是可迭代对象的对偶。
Iterable是一个惰性消费序列——迭代器在需要使用每个项时都会拉出它,因此枚举是由消费者驱动的。
可观察对象是一个惰性生成的序列——每一项在被添加到序列时都被推送给观察者,因此枚举是由生产者驱动的。
就像电子表格一样。通常基于事件驱动框架。
和所有的“范式”一样,它的新颖性是有争议的。
根据我对参与者的分布式流网络的经验,它很容易陷入节点网络状态一致性的普遍问题,即你最终会陷入很多振荡并陷入奇怪的循环中。
这是很难避免的,因为一些语义意味着引用循环或广播,并且当参与者网络收敛(或不收敛)在某些不可预知的状态时,可能会非常混乱。
类似地,尽管具有定义良好的边缘,但可能无法到达某些状态,因为全局状态偏离了解决方案。2+2可能等于4,也可能不等于4,这取决于2是什么时候变成2的,以及它们是否一直是这样。电子表格具有同步时钟和循环检测。分布式参与者通常不会。
一切都很有趣:)。