我读过维基百科上关于响应式编程的文章。我还读过一篇关于函数式响应式编程的小文章。这些描述相当抽象。
函数式响应式编程(FRP)在实践中意味着什么? 反应式编程(相对于非反应式编程?)由什么组成?
我的背景是命令式/OO语言,所以与此范例相关的解释将受到赞赏。
我读过维基百科上关于响应式编程的文章。我还读过一篇关于函数式响应式编程的小文章。这些描述相当抽象。
函数式响应式编程(FRP)在实践中意味着什么? 反应式编程(相对于非反应式编程?)由什么组成?
我的背景是命令式/OO语言,所以与此范例相关的解释将受到赞赏。
当前回答
在阅读了许多页关于FRP的文章后,我终于看到了这篇关于FRP的启发性文章,它最终让我明白了FRP的真正含义。
下面我引用海因里希·阿费尔马斯(活性香蕉的作者)的话。
What is the essence of functional reactive programming? A common answer would be that “FRP is all about describing a system in terms of time-varying functions instead of mutable state”, and that would certainly not be wrong. This is the semantic viewpoint. But in my opinion, the deeper, more satisfying answer is given by the following purely syntactic criterion: The essence of functional reactive programming is to specify the dynamic behavior of a value completely at the time of declaration. For instance, take the example of a counter: you have two buttons labelled “Up” and “Down” which can be used to increment or decrement the counter. Imperatively, you would first specify an initial value and then change it whenever a button is pressed; something like this: counter := 0 -- initial value on buttonUp = (counter := counter + 1) -- change it later on buttonDown = (counter := counter - 1) The point is that at the time of declaration, only the initial value for the counter is specified; the dynamic behavior of counter is implicit in the rest of the program text. In contrast, functional reactive programming specifies the whole dynamic behavior at the time of declaration, like this: counter :: Behavior Int counter = accumulate ($) 0 (fmap (+1) eventUp `union` fmap (subtract 1) eventDown) Whenever you want to understand the dynamics of counter, you only have to look at its definition. Everything that can happen to it will appear on the right-hand side. This is very much in contrast to the imperative approach where subsequent declarations can change the dynamic behavior of previously declared values.
所以,在我的理解中,FRP程序是一组方程:
J是离散的:1,2,3,4…
F依赖于t所以这包含了外部刺激模型的可能性
程序的所有状态都封装在变量x_i中
FRP库考虑了进度时间,换句话说,从j到j+1。
我会在这个视频中更详细地解释这些方程。
编辑:
在最初的回答大约2年后,最近我得出结论,FRP实现还有另一个重要的方面。它们需要(通常也会)解决一个重要的实际问题:缓存失效。
x_i-s的方程描述了一个依赖关系图。当x_i在j时刻发生变化时,并不需要更新j+1时刻的所有其他x_i'值,因此并不需要重新计算所有依赖项,因为有些x_i'可能与x_i无关。
而且,改变的x_i-s可以被增量更新。例如,让我们考虑Scala中的映射操作f=g.map(_+1),其中f和g是int类型的列表。这里f对应于x_i(t_j) g是x_j(t_j)现在,如果我将一个元素前置到g中,那么对g中的所有元素执行映射操作将是浪费的。一些FRP实现(例如reflect - FRP)旨在解决这个问题。这个问题也称为增量计算。
换句话说,FRP中的行为(x_i-s)可以被认为是缓存的计算。如果某些f_i-s确实发生了变化,FRP引擎的任务就是有效地使这些缓存(x_i-s)失效并重新计算。
其他回答
免责声明:我的答案是在rx.js的上下文中给出的——一个用于Javascript的“响应式编程”库。
在函数式编程中,不是遍历集合的每个项,而是对集合本身应用高阶函数(hof)。因此,FRP背后的思想是,与其处理每个单独的事件,不如创建一个事件流(使用可观察对象*实现),并对其应用HoFs。通过这种方式,您可以将系统可视化为连接发布者和订阅者的数据管道。
The major advantages of using an observable are: i) it abstracts away state from your code, e.g., if you want the event handler to get fired only for every 'n'th event, or stop firing after the first 'n' events, or start firing only after the first 'n' events, you can just use the HoFs (filter, takeUntil, skip respectively) instead of setting, updating and checking counters. ii) it improves code locality - if you have 5 different event handlers changing the state of a component, you can merge their observables and define a single event handler on the merged observable instead, effectively combining 5 event handlers into 1. This makes it very easy to reason about what events in your entire system can affect a component, since it's all present in a single handler.
可观察对象是可迭代对象的对偶。
Iterable是一个惰性消费序列——迭代器在需要使用每个项时都会拉出它,因此枚举是由消费者驱动的。
可观察对象是一个惰性生成的序列——每一项在被添加到序列时都被推送给观察者,因此枚举是由生产者驱动的。
有一种简单的方法可以直观地了解它是什么样子的,那就是把你的程序想象成一个电子表格,所有的变量都是单元格。如果电子表格中的任何单元格发生变化,则引用该单元格的任何单元格也会发生变化。玻璃钢也是一样。现在想象一下,一些单元格会自己改变(或者更确切地说,是从外部世界中获取的):在GUI情况下,鼠标的位置就是一个很好的例子。
这必然会错过很多东西。当你实际使用FRP系统时,这个比喻很快就被打破了。首先,通常也会尝试建模离散事件(例如鼠标被点击)。我把这个放在这里只是为了让你们了解它是什么样的。
如果你想感受一下FRP,你可以从1998年的Fran教程开始,它有动画插图。对于论文,从函数反应动画开始,然后在我的主页上的出版物链接和Haskell wiki上的FRP链接上跟踪链接。
就我个人而言,我喜欢在讨论如何实施FRP之前思考它意味着什么。 (没有规范的代码是没有问题的答案,因此“甚至没有错”。) 因此,我没有像Thomas K在另一个答案(图、节点、边、触发、执行等)中那样用表示/实现术语描述FRP。 有许多可能的实现风格,但没有一种实现说明FRP是什么。
I do resonate with Laurence G's simple description that FRP is about "datatypes that represent a value 'over time' ". Conventional imperative programming captures these dynamic values only indirectly, through state and mutations. The complete history (past, present, future) has no first class representation. Moreover, only discretely evolving values can be (indirectly) captured, since the imperative paradigm is temporally discrete. In contrast, FRP captures these evolving values directly and has no difficulty with continuously evolving values.
FRP is also unusual in that it is concurrent without running afoul of the theoretical & pragmatic rats' nest that plagues imperative concurrency. Semantically, FRP's concurrency is fine-grained, determinate, and continuous. (I'm talking about meaning, not implementation. An implementation may or may not involve concurrency or parallelism.) Semantic determinacy is very important for reasoning, both rigorous and informal. While concurrency adds enormous complexity to imperative programming (due to nondeterministic interleaving), it is effortless in FRP.
那么,什么是FRP? 你可以自己发明的。 从这些想法开始:
Dynamic/evolving values (i.e., values "over time") are first class values in themselves. You can define them and combine them, pass them into & out of functions. I called these things "behaviors". Behaviors are built up out of a few primitives, like constant (static) behaviors and time (like a clock), and then with sequential and parallel combination. n behaviors are combined by applying an n-ary function (on static values), "point-wise", i.e., continuously over time. To account for discrete phenomena, have another type (family) of "events", each of which has a stream (finite or infinite) of occurrences. Each occurrence has an associated time and value. To come up with the compositional vocabulary out of which all behaviors and events can be built, play with some examples. Keep deconstructing into pieces that are more general/simple. So that you know you're on solid ground, give the whole model a compositional foundation, using the technique of denotational semantics, which just means that (a) each type has a corresponding simple & precise mathematical type of "meanings", and (b) each primitive and operator has a simple & precise meaning as a function of the meanings of the constituents. Never, ever mix implementation considerations into your exploration process. If this description is gibberish to you, consult (a) Denotational design with type class morphisms, (b) Push-pull functional reactive programming (ignoring the implementation bits), and (c) the Denotational Semantics Haskell wikibooks page. Beware that denotational semantics has two parts, from its two founders Christopher Strachey and Dana Scott: the easier & more useful Strachey part and the harder and less useful (for software design) Scott part.
如果你坚持这些原则,我希望你能得到或多或少符合FRP精神的东西。
Where did I get these principles? In software design, I always ask the same question: "what does it mean?". Denotational semantics gave me a precise framework for this question, and one that fits my aesthetics (unlike operational or axiomatic semantics, both of which leave me unsatisfied). So I asked myself what is behavior? I soon realized that the temporally discrete nature of imperative computation is an accommodation to a particular style of machine, rather than a natural description of behavior itself. The simplest precise description of behavior I can think of is simply "function of (continuous) time", so that's my model. Delightfully, this model handles continuous, deterministic concurrency with ease and grace.
正确有效地实现这个模型是一个相当大的挑战,但那是另一个故事了。
根据前面的答案,在数学上,我们似乎只是以更高的顺序思考。我们不认为值x具有类型x,而是考虑函数x: T→x,其中T是时间的类型,可以是自然数、整数或连续统。当我们用编程语言写y:= x + 1时,我们实际上是指方程y(t) = x(t) + 1。
在纯函数式编程中,没有副作用。对于许多类型的软件(例如,任何与用户交互的软件),在某种程度上副作用都是必要的。
在保持函数式风格的同时获得类似副作用的行为的一种方法是使用函数式响应式编程。这是函数式编程和响应式编程的结合。(你链接到的维基百科文章是关于后者的。)
响应式编程背后的基本思想是,有特定的数据类型表示“随时间”的值。涉及这些随时间变化的值的计算本身也具有随时间变化的值。
例如,您可以将鼠标坐标表示为一对随时间变化的整数值。假设我们有这样的东西(这是伪代码):
x = <mouse-x>;
y = <mouse-y>;
在任何时刻,x和y都是鼠标的坐标。与非响应式编程不同,我们只需要进行一次赋值,x和y变量将自动保持“最新”。这就是响应式编程和函数式编程协同工作的原因:响应式编程消除了对变量突变的需要,同时仍然允许您完成许多可以通过变量突变完成的工作。
如果我们在此基础上进行一些计算,得到的值也将是随时间变化的值。例如:
minX = x - 16;
minY = y - 16;
maxX = x + 16;
maxY = y + 16;
在这个例子中,minX总是比鼠标指针的x坐标小16。使用响应式感知库,你可以这样说:
rectangle(minX, minY, maxX, maxY)
一个32x32的方框将围绕鼠标指针绘制,并跟踪它的移动位置。
这是一篇关于函数式响应式编程的很好的论文。