我读过维基百科上关于响应式编程的文章。我还读过一篇关于函数式响应式编程的小文章。这些描述相当抽象。
函数式响应式编程(FRP)在实践中意味着什么? 反应式编程(相对于非反应式编程?)由什么组成?
我的背景是命令式/OO语言,所以与此范例相关的解释将受到赞赏。
我读过维基百科上关于响应式编程的文章。我还读过一篇关于函数式响应式编程的小文章。这些描述相当抽象。
函数式响应式编程(FRP)在实践中意味着什么? 反应式编程(相对于非反应式编程?)由什么组成?
我的背景是命令式/OO语言,所以与此范例相关的解释将受到赞赏。
当前回答
有一种简单的方法可以直观地了解它是什么样子的,那就是把你的程序想象成一个电子表格,所有的变量都是单元格。如果电子表格中的任何单元格发生变化,则引用该单元格的任何单元格也会发生变化。玻璃钢也是一样。现在想象一下,一些单元格会自己改变(或者更确切地说,是从外部世界中获取的):在GUI情况下,鼠标的位置就是一个很好的例子。
这必然会错过很多东西。当你实际使用FRP系统时,这个比喻很快就被打破了。首先,通常也会尝试建模离散事件(例如鼠标被点击)。我把这个放在这里只是为了让你们了解它是什么样的。
其他回答
看看Rx, net的响应式扩展。他们指出,使用IEnumerable,你基本上是从流中“拉”出来的。IQueryable/IEnumerable上的Linq查询是集合操作,从集合中“吸”出结果。但是在IObservable上使用相同的操作符,你可以编写“反应”的Linq查询。
例如,您可以编写这样的Linq查询 (from MyObservableSetOfMouseMovements中的m m.X<100 m.Y<100 选择新的点(m.X,m.Y))。
有了Rx扩展,就是这样:你有UI代码,它会对传入的鼠标移动流做出反应,并在你处于100,100框时进行绘制……
伙计,这主意太棒了!为什么1998年的时候我没有发现?总之,这是我对Fran教程的理解。建议是最受欢迎的,我正在考虑开始一个基于此游戏引擎。
import pygame
from pygame.surface import Surface
from pygame.sprite import Sprite, Group
from pygame.locals import *
from time import time as epoch_delta
from math import sin, pi
from copy import copy
pygame.init()
screen = pygame.display.set_mode((600,400))
pygame.display.set_caption('Functional Reactive System Demo')
class Time:
def __float__(self):
return epoch_delta()
time = Time()
class Function:
def __init__(self, var, func, phase = 0., scale = 1., offset = 0.):
self.var = var
self.func = func
self.phase = phase
self.scale = scale
self.offset = offset
def copy(self):
return copy(self)
def __float__(self):
return self.func(float(self.var) + float(self.phase)) * float(self.scale) + float(self.offset)
def __int__(self):
return int(float(self))
def __add__(self, n):
result = self.copy()
result.offset += n
return result
def __mul__(self, n):
result = self.copy()
result.scale += n
return result
def __inv__(self):
result = self.copy()
result.scale *= -1.
return result
def __abs__(self):
return Function(self, abs)
def FuncTime(func, phase = 0., scale = 1., offset = 0.):
global time
return Function(time, func, phase, scale, offset)
def SinTime(phase = 0., scale = 1., offset = 0.):
return FuncTime(sin, phase, scale, offset)
sin_time = SinTime()
def CosTime(phase = 0., scale = 1., offset = 0.):
phase += pi / 2.
return SinTime(phase, scale, offset)
cos_time = CosTime()
class Circle:
def __init__(self, x, y, radius):
self.x = x
self.y = y
self.radius = radius
@property
def size(self):
return [self.radius * 2] * 2
circle = Circle(
x = cos_time * 200 + 250,
y = abs(sin_time) * 200 + 50,
radius = 50)
class CircleView(Sprite):
def __init__(self, model, color = (255, 0, 0)):
Sprite.__init__(self)
self.color = color
self.model = model
self.image = Surface([model.radius * 2] * 2).convert_alpha()
self.rect = self.image.get_rect()
pygame.draw.ellipse(self.image, self.color, self.rect)
def update(self):
self.rect[:] = int(self.model.x), int(self.model.y), self.model.radius * 2, self.model.radius * 2
circle_view = CircleView(circle)
sprites = Group(circle_view)
running = True
while running:
for event in pygame.event.get():
if event.type == QUIT:
running = False
if event.type == KEYDOWN and event.key == K_ESCAPE:
running = False
screen.fill((0, 0, 0))
sprites.update()
sprites.draw(screen)
pygame.display.flip()
pygame.quit()
简而言之:如果每个组成部分都可以被视为一个数字,那么整个系统就可以被视为一个数学方程,对吗?
Paul Hudak的书,The Haskell School of Expression,不仅是对Haskell的很好的介绍,而且还花了相当多的时间在FRP上。如果你是FRP的初学者,我强烈推荐它让你了解FRP是如何工作的。
还有一本看起来像是这本书(2011年出版,2014年更新)的新重写版——哈斯克尔音乐学院。
FRP是函数式编程(编程范式建立在一切都是函数的思想上)和响应式编程范式(建立在一切都是流的思想上(观察者和可观察的哲学))的结合。它应该是世界上最好的。
看看Andre Staltz关于响应式编程的文章。
它是关于随着时间(或忽略时间)的数学数据转换。
在代码中,这意味着函数的纯洁性和声明性编程。
状态错误是标准命令式范例中的一个大问题。不同的代码位可能在程序执行的不同“时间”改变一些共享状态。这很难处理。
在FRP中,你描述了(就像在声明式编程中一样)数据如何从一种状态转换到另一种状态,以及触发它的是什么。这允许您忽略时间,因为您的函数只是对其输入作出反应,并使用它们的当前值创建一个新值。这意味着状态包含在转换节点的图(或树)中,并且在功能上是纯的。
这大大降低了复杂性和调试时间。
想想数学中的A=B+C和程序中的A=B+C之间的区别。 在数学中,你描述的是一种永不改变的关系。在一个程序中,它说“现在”a是B+C。但是下一个命令可能是b++,在这种情况下A不等于B+C。在数学或声明性编程中,A总是等于B+C,无论你在什么时候问。
因此,通过消除共享状态的复杂性并随时间改变值。你的程序更容易推理。
EventStream是一个EventStream +一些转换函数。
行为是一个EventStream +内存中的某个值。
当事件触发时,通过运行转换函数更新值。这产生的值存储在行为内存中。
行为可以被组合以产生新的行为,这些行为是对N个其他行为的转换。该组合值将在输入事件(行为)触发时重新计算。
由于观察器是无状态的,我们经常需要几个观察器来模拟一个状态机,就像在拖动示例中那样。我们必须保存所有相关观察者都可以访问的状态,比如上面的变量路径。”
引用自-弃用观察者模式 http://infoscience.epfl.ch/record/148043/files/DeprecatingObserversTR2010.pdf