PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

这是一个引人入胜的讨论。和许多人一样,我从未考虑过这个话题。我不得不在函数中导入,因为我想在我的一个库中使用Django ORM。在导入我的模型类之前,我不得不调用django.setup(),因为这是在文件的顶部,它被拖到完全非django库代码中,因为IoC注入器结构。

我稍微改了一下,最后把django.setup()放在了单例构造函数中,并把相关的导入放在了每个类方法的顶部。现在这运行得很好,但让我感到不安,因为导入不在顶部,而且我开始担心导入的额外时间。然后我来到这里,怀着极大的兴趣阅读了大家对此的看法。

我有很长的c++背景,现在使用Python/Cython。我对此的看法是,为什么不把导入放在函数中,除非它会导致一个概要瓶颈。这就像在你需要变量之前为它们声明空间一样。问题是我有数千行代码,所有的导入都在顶部!所以我想从现在开始,当我有时间的时候,我会在这里和那里改变奇怪的文件。

其他回答

当函数被调用0次或1次时,第一种变体确实比第二种更有效。然而,对于第二次和后续调用,“导入每个调用”方法实际上效率较低。请参阅此链接,了解一种通过“惰性导入”将两种方法的优点结合起来的惰性加载技术。

但除了效率之外,还有其他原因可以解释为什么你会更喜欢其中一种。一种方法是让阅读代码的人更清楚地了解这个模块所具有的依赖关系。它们也有非常不同的失败特征——如果没有“datetime”模块,第一个将在加载时失败,而第二个直到方法被调用才会失败。

补充说明:在IronPython中,导入可能比在CPython中要昂贵一些,因为代码基本上是在导入时被编译的。

有趣的是,到目前为止,没有一个回答提到并行处理,当序列化的函数代码被推到其他核心时,可能需要将导入放在函数中,例如在ipyparallel的情况下。

下面是一个示例,其中所有导入都位于最顶部(这是我唯一一次需要这样做)。我希望能够在Un*x和Windows上终止子进程。

import os
# ...
try:
    kill = os.kill  # will raise AttributeError on Windows
    from signal import SIGTERM
    def terminate(process):
        kill(process.pid, SIGTERM)
except (AttributeError, ImportError):
    try:
        from win32api import TerminateProcess  # use win32api if available
        def terminate(process):
            TerminateProcess(int(process._handle), -1)
    except ImportError:
        def terminate(process):
            raise NotImplementedError  # define a dummy function

(回顾:约翰·米利金所说。)

这就像许多其他优化一样——你牺牲了一些可读性来换取速度。正如John提到的,如果您已经完成了分析作业,并且发现这是一个非常有用的更改,并且您需要额外的速度,那么就去做吧。最好把所有其他的导入都放在一起:

from foo import bar
from baz import qux
# Note: datetime is imported in SomeClass below

在函数中导入变量/局部作用域可以提高性能。这取决于函数中导入对象的使用情况。如果你多次循环并访问一个模块全局对象,将它导入为本地会有帮助。

test.py

X=10
Y=11
Z=12
def add(i):
  i = i + 10

runlocal.py

from test import add, X, Y, Z

    def callme():
      x=X
      y=Y
      z=Z
      ladd=add 
      for i  in range(100000000):
        ladd(i)
        x+y+z

    callme()

run.py

from test import add, X, Y, Z

def callme():
  for i in range(100000000):
    add(i)
    X+Y+Z

callme()

在Linux上的时间显示了一个小的增益

/usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python run.py 
    0:17.80 real,   17.77 user, 0.01 sys
/tmp/test$ /usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python runlocal.py 
    0:14.23 real,   14.22 user, 0.01 sys

真实的是挂钟。用户是程序中的时间。Sys是系统调用的时间。

https://docs.python.org/3.5/reference/executionmodel.html#resolution-of-names