我想删除这个数据帧中的行:

a)在所有列中包含NAs。下面是我的示例数据帧。

             gene hsap mmul mmus rnor cfam
1 ENSG00000208234    0   NA   NA   NA   NA
2 ENSG00000199674    0   2    2    2    2
3 ENSG00000221622    0   NA   NA   NA   NA
4 ENSG00000207604    0   NA   NA   1    2
5 ENSG00000207431    0   NA   NA   NA   NA
6 ENSG00000221312    0   1    2    3    2

基本上,我想获得如下所示的数据帧。

             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
6 ENSG00000221312    0   1    2    3    2

b)只在某些列中包含NAs,所以我也可以得到这个结果:

             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
4 ENSG00000207604    0   NA   NA   1    2
6 ENSG00000221312    0   1    2    3    2

当前回答

尝试na.omit (your.data.frame)。至于第二个问题,试着把它作为另一个问题发布(为了清晰)。

其他回答

我们也可以用子集函数。

finalData<-subset(data,!(is.na(data["mmul"]) | is.na(data["rnor"])))

这将只给出那些在mmul和rnor中都没有NA的行

我更喜欢用下面的方法来检查行中是否包含NAs:

row.has.na <- apply(final, 1, function(x){any(is.na(x))})

这将返回逻辑向量,其中的值表示一行中是否有NA。你可以使用它来查看你需要删除多少行:

sum(row.has.na)

并最终放弃它们

final.filtered <- final[!row.has.na,]

对于过滤具有特定部分NAs的行,它变得有点棘手(例如,您可以将'final[,5:6]'输入到'apply')。 一般来说,Joris Meys的解决方案似乎更优雅。

如果希望控制每行有多少个NAs是有效的,请尝试此功能。对于许多调查数据集,过多的空白问题回答可能会破坏结果。所以它们在某个阈值之后就会被删除。这个函数允许你在删除行之前选择有多少个NAs:

delete.na <- function(DF, n=0) {
  DF[rowSums(is.na(DF)) <= n,]
}

默认情况下,它将消除所有NAs:

delete.na(final)
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0    2    2    2    2
6 ENSG00000221312    0    1    2    3    2

或指定允许的最大NAs数量:

delete.na(final, 2)
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0    2    2    2    2
4 ENSG00000207604    0   NA   NA    1    2
6 ENSG00000221312    0    1    2    3    2

Tidyr有一个新函数drop_na:

library(tidyr)
df %>% drop_na()
#              gene hsap mmul mmus rnor cfam
# 2 ENSG00000199674    0    2    2    2    2
# 6 ENSG00000221312    0    1    2    3    2
df %>% drop_na(rnor, cfam)
#              gene hsap mmul mmus rnor cfam
# 2 ENSG00000199674    0    2    2    2    2
# 4 ENSG00000207604    0   NA   NA    1    2
# 6 ENSG00000221312    0    1    2    3    2

使用dplyr包,我们可以过滤NA如下:

dplyr::filter(df,  !is.na(columnname))