我想删除这个数据帧中的行:

a)在所有列中包含NAs。下面是我的示例数据帧。

             gene hsap mmul mmus rnor cfam
1 ENSG00000208234    0   NA   NA   NA   NA
2 ENSG00000199674    0   2    2    2    2
3 ENSG00000221622    0   NA   NA   NA   NA
4 ENSG00000207604    0   NA   NA   1    2
5 ENSG00000207431    0   NA   NA   NA   NA
6 ENSG00000221312    0   1    2    3    2

基本上,我想获得如下所示的数据帧。

             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
6 ENSG00000221312    0   1    2    3    2

b)只在某些列中包含NAs,所以我也可以得到这个结果:

             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
4 ENSG00000207604    0   NA   NA   1    2
6 ENSG00000221312    0   1    2    3    2

当前回答

如果您希望更好地控制如何判定行无效,另一个选项是

final <- final[!(is.na(final$rnor)) | !(is.na(rawdata$cfam)),]

使用上述方法,得到:

             gene hsap mmul mmus rnor cfam
1 ENSG00000208234    0   NA   NA   NA   2
2 ENSG00000199674    0   2    2    2    2
3 ENSG00000221622    0   NA   NA   2   NA
4 ENSG00000207604    0   NA   NA   1    2
5 ENSG00000207431    0   NA   NA   NA   NA
6 ENSG00000221312    0   1    2    3    2

就变成:

             gene hsap mmul mmus rnor cfam
1 ENSG00000208234    0   NA   NA   NA   2
2 ENSG00000199674    0   2    2    2    2
3 ENSG00000221622    0   NA   NA   2   NA
4 ENSG00000207604    0   NA   NA   1    2
6 ENSG00000221312    0   1    2    3    2

...其中只有第5行被删除,因为它是唯一包含rnor和cfam的NAs的行。然后可以更改布尔逻辑以适应特定的需求。

其他回答

假设dat作为您的数据帧,预期的输出可以使用

1. rowsums

> dat[!rowSums((is.na(dat))),]
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
6 ENSG00000221312    0   1    2    3    2

2.拉普兰人

> dat[!Reduce('|',lapply(dat,is.na)),]
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
6 ENSG00000221312    0   1    2    3    2

还要检查complete。例:

> final[complete.cases(final), ]
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0    2    2    2    2
6 ENSG00000221312    0    1    2    3    2

na。省略是更好的只是删除所有的NA。完成了。case允许部分选择,只包括数据框架的某些列:

> final[complete.cases(final[ , 5:6]),]
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0    2    2    2    2
4 ENSG00000207604    0   NA   NA    1    2
6 ENSG00000221312    0    1    2    3    2

你的解决办法行不通。如果你坚持使用的话。不,那你就得这样做:

> final[rowSums(is.na(final[ , 5:6])) == 0, ]
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0    2    2    2    2
4 ENSG00000207604    0   NA   NA    1    2
6 ENSG00000221312    0    1    2    3    2

但是使用complete。case更清晰,也更快。

如果您希望更好地控制如何判定行无效,另一个选项是

final <- final[!(is.na(final$rnor)) | !(is.na(rawdata$cfam)),]

使用上述方法,得到:

             gene hsap mmul mmus rnor cfam
1 ENSG00000208234    0   NA   NA   NA   2
2 ENSG00000199674    0   2    2    2    2
3 ENSG00000221622    0   NA   NA   2   NA
4 ENSG00000207604    0   NA   NA   1    2
5 ENSG00000207431    0   NA   NA   NA   NA
6 ENSG00000221312    0   1    2    3    2

就变成:

             gene hsap mmul mmus rnor cfam
1 ENSG00000208234    0   NA   NA   NA   2
2 ENSG00000199674    0   2    2    2    2
3 ENSG00000221622    0   NA   NA   2   NA
4 ENSG00000207604    0   NA   NA   1    2
6 ENSG00000221312    0   1    2    3    2

...其中只有第5行被删除,因为它是唯一包含rnor和cfam的NAs的行。然后可以更改布尔逻辑以适应特定的需求。

如果你只想删除所有列中有NAs的行,下面是解决方案:

df %>%
    filter(!if_all(everything(), ~  is.na(.)))

Tidyr有一个新函数drop_na:

library(tidyr)
df %>% drop_na()
#              gene hsap mmul mmus rnor cfam
# 2 ENSG00000199674    0    2    2    2    2
# 6 ENSG00000221312    0    1    2    3    2
df %>% drop_na(rnor, cfam)
#              gene hsap mmul mmus rnor cfam
# 2 ENSG00000199674    0    2    2    2    2
# 4 ENSG00000207604    0   NA   NA    1    2
# 6 ENSG00000221312    0    1    2    3    2