我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
这个函数处理向量v的范数为0的情况。
在sklearn或numpy中是否提供了类似的函数?
我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
这个函数处理向量v的范数为0的情况。
在sklearn或numpy中是否提供了类似的函数?
当前回答
如果你使用多维数组,快速解决是可能的。
假设我们有一个二维数组,我们想用最后一个轴归一化,而有些行有零范数。
import numpy as np
arr = np.array([
[1, 2, 3],
[0, 0, 0],
[5, 6, 7]
], dtype=np.float)
lengths = np.linalg.norm(arr, axis=-1)
print(lengths) # [ 3.74165739 0. 10.48808848]
arr[lengths > 0] = arr[lengths > 0] / lengths[lengths > 0][:, np.newaxis]
print(arr)
# [[0.26726124 0.53452248 0.80178373]
# [0. 0. 0. ]
# [0.47673129 0.57207755 0.66742381]]
其他回答
这可能对你也有用
import numpy as np
normalized_v = v / np.sqrt(np.sum(v**2))
但当v的长度为0时失效。
在这种情况下,引入一个小常数来防止零除法可以解决这个问题。
正如评论中所建议的,人们也可以使用
v/np.linalg.norm(v)
对于2D数组,可以使用下面的一行代码跨行规范化。要跨列归一化,只需设置axis=0。
a / np.linalg.norm(a, axis=1, keepdims=True)
一个简单的点积就可以了。不需要任何额外的包装。
x = x/np.sqrt(x.dot(x))
顺便说一下,如果x的范数为0,它本质上是一个零向量,并且不能转换为单位向量(范数为1)。如果你想捕获np.array([0,0,…0])的情况,那么使用
norm = np.sqrt(x.dot(x))
x = x/norm if norm != 0 else x
如果你想要[0;1]为1d-array,然后使用
(a - a.min(axis=0)) / (a.max(axis=0) - a.min(axis=0))
a是你的一维数组。
一个例子:
>>> a = np.array([0, 1, 2, 4, 5, 2])
>>> (a - a.min(axis=0)) / (a.max(axis=0) - a.min(axis=0))
array([0. , 0.2, 0.4, 0.8, 1. , 0.4])
注意该方法。对于保存值之间的比例有一个限制:一维数组必须至少有一个0,并且由0和正数组成。
如果你在使用scikit-learn,你可以使用sklearn.预处理。normalize:
import numpy as np
from sklearn.preprocessing import normalize
x = np.random.rand(1000)*10
norm1 = x / np.linalg.norm(x)
norm2 = normalize(x[:,np.newaxis], axis=0).ravel()
print np.all(norm1 == norm2)
# True