我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:

def normalize(v):
    norm = np.linalg.norm(v)
    if norm == 0: 
       return v
    return v / norm

这个函数处理向量v的范数为0的情况。

在sklearn或numpy中是否提供了类似的函数?


当前回答

一个简单的点积就可以了。不需要任何额外的包装。

x = x/np.sqrt(x.dot(x))

顺便说一下,如果x的范数为0,它本质上是一个零向量,并且不能转换为单位向量(范数为1)。如果你想捕获np.array([0,0,…0])的情况,那么使用

norm = np.sqrt(x.dot(x))
x = x/norm if norm != 0 else x

其他回答

如果你在使用scikit-learn,你可以使用sklearn.预处理。normalize:

import numpy as np
from sklearn.preprocessing import normalize

x = np.random.rand(1000)*10
norm1 = x / np.linalg.norm(x)
norm2 = normalize(x[:,np.newaxis], axis=0).ravel()
print np.all(norm1 == norm2)
# True

对于2D数组,可以使用下面的一行代码跨行规范化。要跨列归一化,只需设置axis=0。

a / np.linalg.norm(a, axis=1, keepdims=True)

如果你想要[0;1]为1d-array,然后使用

(a - a.min(axis=0)) / (a.max(axis=0) - a.min(axis=0))

a是你的一维数组。

一个例子:

>>> a = np.array([0, 1, 2, 4, 5, 2])
>>> (a - a.min(axis=0)) / (a.max(axis=0) - a.min(axis=0))
array([0. , 0.2, 0.4, 0.8, 1. , 0.4])

注意该方法。对于保存值之间的比例有一个限制:一维数组必须至少有一个0,并且由0和正数组成。

如果你有多维数据,并希望每个轴都归一化到最大值或总和:

def normalize(_d, to_sum=True, copy=True):
    # d is a (n x dimension) np array
    d = _d if not copy else np.copy(_d)
    d -= np.min(d, axis=0)
    d /= (np.sum(d, axis=0) if to_sum else np.ptp(d, axis=0))
    return d

使用numpys的峰对峰函数。

a = np.random.random((5, 3))

b = normalize(a, copy=False)
b.sum(axis=0) # array([1., 1., 1.]), the rows sum to 1

c = normalize(a, to_sum=False, copy=False)
c.max(axis=0) # array([1., 1., 1.]), the max of each row is 1

不使用sklearn,只使用numpy。 只需定义一个函数:。

假设行是变量,列是样本(轴= 1):

import numpy as np

# Example array
X = np.array([[1,2,3],[4,5,6]])

def stdmtx(X):
    means = X.mean(axis =1)
    stds = X.std(axis= 1, ddof=1)
    X= X - means[:, np.newaxis]
    X= X / stds[:, np.newaxis]
    return np.nan_to_num(X)

输出:

X
array([[1, 2, 3],
       [4, 5, 6]])

stdmtx(X)
array([[-1.,  0.,  1.],
       [-1.,  0.,  1.]])